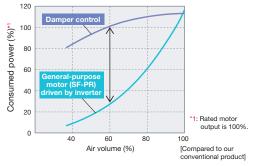


FACTORY AUTOMATION

INVERTER FR-F800

Enhanced Next-Generation Energy-Saving Inverter

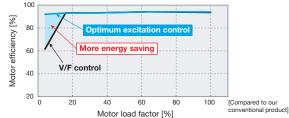
- Energy saving
- Functions ideal for fans and pumps
- Security & safety
- Compatibility with the environment
- Easy setup & operation



1 Energy Saving with Inverters

The consumed power of a variable-torque load, such as fans, pumps, and blowers, is proportional to the cube of its rotation speed.

Adjusting the air volume by the inverter rotation speed control can lead to energy savings.


[Example of blower operation characteristic]

Utilizing the motor capability to the full

Optimum excitation control

 Optimum excitation control continuously adjusts the excitation current to an optimum level to provide the highest motor efficiency. With a small load torque, a substantial energy saving can be achieved. For example, at 4% motor load torque for a general-purpose motor, the motor efficiency under Optimum excitation control is about 30% higher than the motor efficiency under V/F control.

(When the inverter running frequency is 60 Hz and the SF-PR 4P motor (15 kW) is used)

NEW Improving starting torque and saving energy at the same time

Advanced optimum excitation control

Advanced optimum excitation control, which has been newly developed, provides a large starting torque while maintaining the motor efficiency under the conventional Optimum excitation control.

Without the need of troublesome adjustment of parameters (acceleration/deceleration time, torque boost, etc.), acceleration is done in a short time. Also, energy saving operation with the utmost improved motor efficiency is performed during constant-speed operation.

NEW Supporting operations of various motors

Offline auto tuning

The offline auto tuning function to measure circuit constants of the motor enables optimal operation of motors even when motor constants vary, when a motor of other manufacturers is used, or when the wiring distance is long. As well as Mitsubishi general-purpose motors, Mitsubishi PM motors (MM-EFS, MM-THE4), sensorless operation can be performed for other manufacturers' general-purpose motors^{*2} and other manufacturers' permanent magnet (PM) motors^{*2}.

The tuning function enables the Advanced optimum excitation control of other manufacturers' general-purpose motors^{*2}, which increases the use in the energy saving applications.

Mitsubishi general-purpose (induction) motor SF-PR

*2: Depending on the motor characteristics, tuning may not be available.

by other manufacturers

P.33

Ste

2 Energy Saving with High-Efficiency Motor

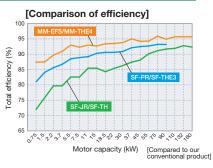
In the international context of global warming prevention, many countries in the world have started to introduce laws and regulations to mandate manufacturing and sales of high-efficiency motors. With the use of high-efficiency motors, further energy saving is achieved.

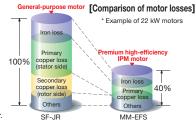
[IE code]

As an international standard of the efficiency, IEC60034-30 (energy-efficiency classes for singlespeed, three-phase, cage-induction motors) was formulated in October 2008. The efficiency is classified into four classes from IE1 to IE4. The larger number means the higher efficiency.

Further energy saving with the premium high-efficiency IPM motor

MM-EFS / MM-THE4

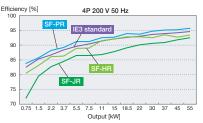

- •The IPM motor, with permanent magnets embedded in the rotor, achieves even higher efficiency as compared to the general-purpose motor (SF-PR/SF-THE3).
- •The IM driving setting can be switched to IPM driving setting by only one setting. ("12" (MM-EFS/MM-THE4) in the parameter [IPM]. Refer to page 116 for details.)


Do not drive an IPM motor in the induction motor control settings.

Why is an IPM motor more efficient?

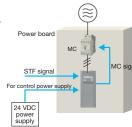
·No current flows to the rotor (secondary side), and no secondary copper loss is generated. ·Magnetic flux is generated with permanent magnets, and less motor current is required. ·Embedded magnets provide reluctance torque*4, and the reluctance torque can be applied.

*4: Reluctance torque occurs due to magnetic imbalance on the rotor.



Excellent compatibility with the high-performance energy-saving motor

Motor constants are stored in the inverter. Energy-saving operation can be started just by setting parameters. The SF-PR motor conforms to the Japanese domestic Top Runner Standard (IE3 equivalent). Its energy-saving operation contributes reduction in the electricity charges, which in turn lowers the running cost.


Refer to page 108 for the other features.

3 Energy-Saving Functions Suitable for Various Systems

Standby power reduction

NEW •With the 24 VDC external power supply, the input MC signal can be turned OFF after the motor is stopped, and turned ON before activating the motor. The inverter enables self power management to reduce standby power. •The inverter cooling fan can be controlled depending on the temperature of the inverter heatsink. Also, signals can be output in accordance with the inverter cooling fan operation. When the fan is installed on the enclosure, the enclosure fan can be synchronized with the inverter cooling fan. Extra power consumption when the motor is stopped can be reduced.

Energy saving at a glance

Energy saving monitor / Pulse train output of output power

•Energy saving monitor is available. The energy saving effect can be checked using an operation panel, output terminal, or network.

•The output power amount measured

by the inverter can be output in pulses. The cumulative power amount can be easily checked.

(This function cannot be used as a meter to certify electricity billings.)

With the Mitsubishi energy measuring module, the energy saving effect can be displayed, measured, and collected

Effective use of the regenerative energy Option

FR-CV / FR-HC2

Multiple inverters can be connected to the power regeneration common converter (FR-CV) or the high power factor converter (FR-HC2) through a common PN bus. The regenerated energy is

used by another inverter, and if there is still an excess, it is (a)-ACL returned to the power supply,

saving on the energy consumption. The 355K or higher models are inverter-converter separated types,

which are suitable for power regeneration.

P.124

P.101

Efficiency class IEC 60034-30 (super premium efficiency) IE3 (premium efficiency) IE2 (high efficiency) IE1 (standard efficiency) Below the class

SF-PR

FUNCTIONS IDEAL FOR FANS AND PUMPS

1 Optimum Inverter Capacity Selection

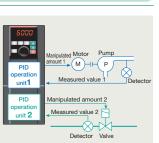
Multiple rating

The rating can be selected between the two types (LD (light duty) or SLD (superlight duty)) depending on the load of the fan/pump to be used. The optimum inverter capacity can be selected suitable for the motor to be used.

 Load
 Rating
 Overload current rating

 Superlight duty
 SLD rating
 110% 60 s, 120% 3 s (inverse-time characteristics) at surrounding air temperature of 40°C

 Light duty
 LD rating
 120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C


For the 200 V class 90K or higher and the 400 V class 75K or higher, a motor with one-rank higher capacity can be combined.

For the	list	of inve	erters	bv	rating.	refer	to	page	10	
	1131	01 11100	511013	ъy	raing,	10101	ιU	page	10.	

2 Further Enhanced PID Control

NEW System cost reduction PID multiple loops (two loops)

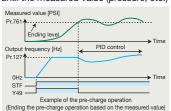
Two PID operation units are available in the inverter. The inverter can perform PID control of the motor operation and control the external equipment at the same time. The system cost can be reduced because no external PID controller is required for controlling the external equipment.

Direct setting of the PID set point

The PID set point can be set directly from the operation panel. The setting can be easily changed at hand.

NEW Visibility improvement Option

With the optional LCD operation panel (FR-LU08), the unit can be changed from "%" to other easy-to-see units. Maintenance and adjustment is facilitated by using a familiar unit of air volume, temperature, etc. for indication.

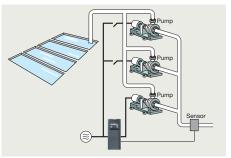


NEW Avoidance of rapid acceleration/deceleration using PID action

PID pre-charge function

Before PID action, the water flow to the pipe is controlled by operating the motor at a constant speed until the measured value (pressure, etc.)

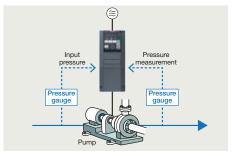
reaches the set level. This function is used to avoid rapid acceleration/deceleration caused by starting the PID action while the pipe is empty, and prevent a water hammer action, etc.



NEW Water volume control with multiple pumps

Multi-pump function

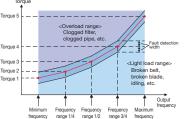
By controlling the pumps connected in parallel (up to four pumps) by the PID control by one inverter, water volume, etc. can be adjusted.


One of the connected pumps is driven by the inverter. Other pumps are driven by commercial power supply. The number of pumps to be driven by commercial power supply is automatically adjusted according to the water volume.

NEW Pump water volume control

PID input pressure control

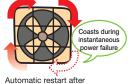
In order to prevent air intake and cavitation inside the pump, the pump inlet pressure can be controlled so that there is no water shortage.


3 Operating Status Monitoring

NEW Detection of mechanical faults

Load characteristics measurement function

The speed/torque relationship is stored while no fault occurs. By comparing the present load status with the stored load characteristics,


out-of-range warnings can Torqu be output if applicable. Mechanical faults such as clogging of the filter or breakage of the belt can be Torque easily detected, and maintenance is facilitated.

4 Smooth Restart

Automatic restart after instantaneous power failure / flying start function

After an instantaneous power failure, the operation is restartable from the coasting motor speed. With the advanced flying start function, the operation can be smoothly started from low speed.

instantaneous power failure function

5 Keep Running during Flying Start Operation


Regeneration avoidance function

The operation frequency is automatically increased to prevent the regenerative overvoltage fault from occurring. This function is useful when a load is forcibly rotated by another fan in the duct.

6 PLC Control with an Inverter

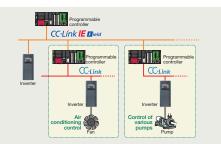
NEW PLC function in the inverter

- •Parameters and setting frequency can be changed at the program. Control programs can be created in sequence ladders using the inverter setup software (FR Configurator2).
- •Inverter control such as inverter operations triggered by input signals, signal output based on inverter operation status, and monitor output can be freely customized based on the machine specifications.
- •All machines can be controlled by the inverter alone, and control can also be dispersed.
- Time-based operation is possible by using in combination with the real-time clock function (when using an optional LCD

NEW Cleaning of fans and pumps

Cleaning function

Foreign matter on the impellers or fans of pumps can be removed by repeating forward/reverse rotation and stopping of the motor. (Use this function when a back flush does not pose a problem.) This function can be also automatically started when the result of load characteristics measurement is out of range (overload).



7 Compatibility with Various Systems

Compatibility with various networks

It supports BACnet® MS/TP as standard, as well as Mitsubishi inverter protocol and MODBUS®RTU (binary) protocol. Communication options are also available for the major network protocols such as CC-Link, CC-Link IE Field, LONWORKS® (to be supported soon), FL-net remote I/O (to be supported soon), PROFIBUS-DPV0, and DeviceNet™.

Simplified external equipment

The CA-type inverters are available. For the CA type, the monitor output terminal FM/CA operates as terminal CA (analog current output 0 to 20 mA), not as terminal FM (pulse train output). An external converter is not required. (The factory setting is different for the CA type and the FM type. (Refer to page 9.))

8 Mechanical Resonance Suppression

Speed smoothing control

NEW

Vibration caused by mechanical resonance can be reduced. (Available with general-purpose motors)

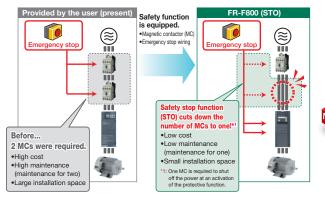
9 Extended Functions

Support for up to three types of options

Three types of plug-in options can be attached. The functions of the inverter can be extended through network. For example, additional I/O terminals can be used. Features

LVS/Cables

4


SECURITY & SAFETY

NEW Safety standards compliance

Controls with safety functions can be easily performed. PLd and SIL2 are supported as standard. (STO)

- •EN ISO 13849-1 PLd / Cat.3
- •EN 61508, EN61800-5-2 SIL2

2 Reliable and Secure Maintenance

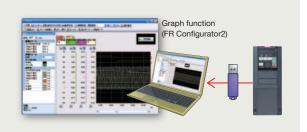
NEW Standard 24 VDC power supply for the control circuit

In addition to the existing power supply input terminals (R1 and S1) of the control circuit, 24 VDC input is equipped as standard.

The 24 VDC power supplied from outside can be fed to the control circuit locally. The parameter setting and

communication operation can be done without turning ON the main power.

NEW Prevention of trouble with temperature monitoring


The inverter is equipped with an internal temperature sensor, which outputs a signal when the internal temperature is high. This facilitates the detection of rises in temperature inside the inverter following cooling fan malfunction, or rises in the surrounding air temperature due to inverter operating conditions.

3 Quick Reaction to Troubles

NEW Easy fault diagnosis

•The operating status (output frequency, etc.) immediately before the protection function activates can be stored in the inverter built-in RAM with the trace function. Stored data (trace data) can be copied to a USB memory device, facilitating easy trouble analysis at a separate location by reading into FR Configurator2.

Trace data stored in the built-in RAM is deleted when the power is turned OFF or the inverter is reset.

•Clock setting is now available in addition to the

already-available cumulative energization time. The time and date at a protective function activation are easily identified. (The clock is reset at power-OFF.) The date and time are also

saved with the trace data, making the fault analysis easier.

By using the real-time clock function with the optional LCD operation panel (FR-LU08) (when using battery), the time is not reset even when the power supply is turned OFF.

Features

Approvements of PLC Function

4 Protection of Critical Parameter Settings

Misoperation prevention by setting a password

•Setting a 4-digit password can restrict parameter reading/writing.

5 Long Life Components and Life Check Function

Long life components

- •The service life of the cooling fans is now 10 years*1. The service life can be further extended by ON/OFF control of the cooling fan.
- •Capacitors with a design life of 10 years *1*2 are adapted.
- •Life indication of life components

Components	Estimated lifespan of the FR-F800**	Guideline of JEMA*3
Cooling fan	10 years	2 to 3 years
Main circuit smoothing capacitor	10 years*2	5 years
Printed board smoothing capacitor	10 years*2	5 years

- *1 Surrounding air temperature: Annual average of 40°C (free from corrosive gas, flammable gas, oil mist, dust and dirt).
 - The design life is a calculated value from the LD rating and is not a guaranteed product life.

*2 Output current: 80% of the inverter LD rating

*3 Excerpts from "Periodic check of the transistorized inverter" of JEMA (Japan Electrical Manufacturer's Association).

NEW Enhanced life check function

- •An internal thermal sensor is equipped to all inverters as standard, which enables monitoring of the installation environment. Use this function as a guide for the life diagnosis.
- •Maintenance timers are available for up to three peripheral devices, such as a motor and bearings.

output" warning

Lis:

Terminal Spec Diagrams

6 Renewal Assurance

NEW

•The inverter installation method is the same as that for the FR-F700(P) series, eliminating any concerns over replacement (except for some capacity models).

Furthermore, the FR-F700(P) series control circuit terminal blocks can be installed with the use of an option (FR-A8TAT).

•The terminal response adjustment function allows a user to adjust the response speed in accordance with the existing facility. (The response time is shorter for the FR-F800 series.) •In addition to the FR-F700(P) series' parameter settings, the FR-F500 series parameter settings (to be supported soon) can be easily copied to the FR-F800 series by using the conversion function of FR Configurator2. (Refer to page 15 for FR Configurator2.)

COMPATIBILITY WITH THE ENVIRONMEN

1 Suppression of Outgoing Harmonic Current and EMI

 Harmonic current may adversely affect the power supply. To suppress such harmonic current, the power-factor-improving compact AC reactor

(FR-HAL) and the DC reactor (FR-HEL) are available. (For the 75K or higher inverter, always connect a DC reactor. Select a DC reactor according to the applied motor capacity.)

- •By attaching the EMC filter connector to the ON or OFF position, the built-in EMC filter can be set enabled/disabled*1*2. When it is enabled, the inverter conforms to the EMC Directive (EN61800-3/2nd Environment Category C3*3) by itself.
- *1: Enabling the EMC filter increases leakage current.
- *2: The input side common mode choke, which is built in the 55K or lower inverter, is always enabled regardless of the EMC filter ON/OFF connector setting.
- *3: Refer to the EMC Installation Guidelines for the required specifications.

	Capacitive filter	Common mode choke	DC reactor
55K or lower	Standard (built-in)	Standard (built-in)	Option (sold separately)
75K or higher	Standard (built-in)	Option (sold separately)	Option (sold separately)

2 Protected in Hazardous Environments

Inverters with circuit board coating (IEC60721-3-3 3C2/3S2) and plated conductors are available for improved environmental resistance. ("-60" or "-06" is affixed to the end of the inverter model name.)

- •The F800 series inverters are equipped with built-in capacitive filters (capacitors) and common mode chokes (55K or lower). By installing a DC reactor (FR-HEL), which is available as an option, they can confirm to the Architectural Standard Specifications (Electric Installation) and the Architectural Standard Specifications (Machinery Installation) (2013 revision) supervised by the Ministry of Land, Infrastructure, Transport and Tourism of Japan.
- •With a high power factor converter (FR-HC2), the inverter is equivalent to a self-excitation three-phase bridge circuit in the "Harmonic Suppression Guidelines for Specific Consumers" in Japan, and realizes the equivalent capacity conversion coefficient K5=0. For the 355K or higher, the converter is separated. Therefore, installation space can be saved when connecting the FR-HC2.

3 Global Compatibility

- •Complies with UL, cUL, and EC Directives (CE marking), and the Radio Waves Act (South Korea) (KC marking).
- •Being RoHS compliant, the FR-F800 inverters are friendly to people and the environment.

Features

EASY SETUP & OPERATION

1 Streamlining the Startup Process

NEW Parameter copy with a USB memory device

A USB host connecter (A type), which allows external device connections, has been added.

Parameters can be copied to commercial USB memory devices.

NEW Easy setup with FR Configurator2

- •With the sense of unity with other Mitsubishi FA products with common MELSOFT design and operability, the software is easy to use.
- •Easy plug-and-play connection is available to the USB terminal equipped as standard.

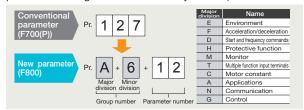
•A free trial version, which contains start-up functions, is available. It can be downloaded at Mitsubishi Electric FA Global Website. (Refer to page 15 for FR Configurator2.)

NEW Easy wiring to the control circuit

Spring clamp terminals have been adopted for control circuit terminals. Wires can be protected against loosening under vibrations during transportation of the inverter. Ten additional terminals are used as compared to the FR-F700(P) series. Round crimping terminals can also be used by employing a control terminal option (FR-A8TR).

2 Easy-to-follow Display Improves the Operability

NEW Easy operation with GOT


- Automatic communication is possible without specifying any parameter settings simply by connecting to the GOT2000 series.
- •The PLC function device monitor can be displayed at the GOT2000 series. Batch control of multiple inverter device monitors is possible with a single GOT unit.

•The sample screen data for the FR-F800 can be found in the screen design software of the GOT2000 series. For the latest version of the screen design software, please contact your local sales office.

NEW Easy-to-follow parameter configuration

With the parameter setting mode selection of the operation panel, the group parameter mode can be selected to provide intuitive and simple parameter settings. (The conventional parameter setting mode is selected by default.)

Easy-to-read operation panel

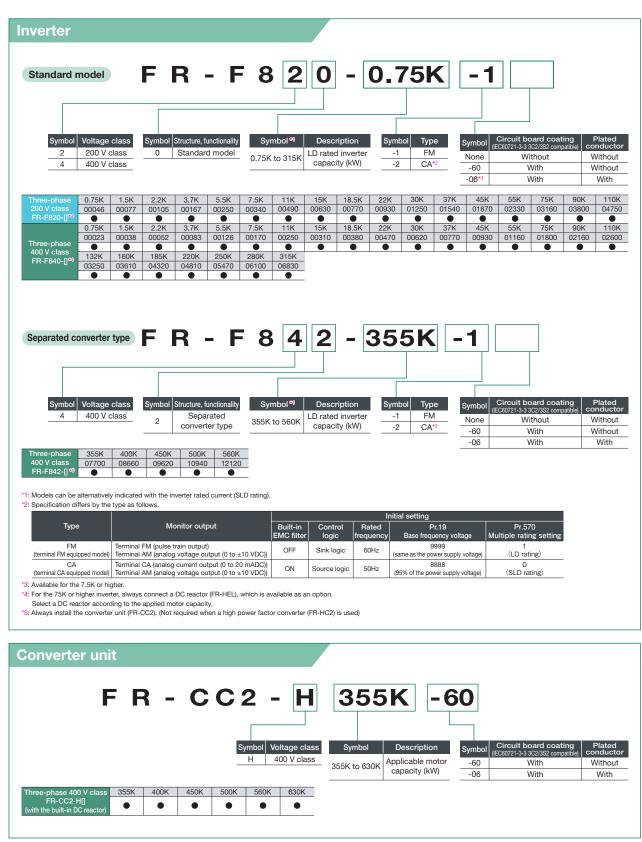
A 5-digit, 12-segment display has been adopted for the operation panel (FR-DU08) for a more natural FR-DU08 FR-LU08 (LCD type)

character display. Furthermore, an optional operation panel (FR-LU08) adopting an LCD panel capable of displaying text and menus is also available.

3 To Aid with Maintenance

Reduced wiring check time

Split-type covers are adapted for all capacity models. Maintenance is now easy because all an operator has to do is to remove the cover for the target wiring area.



Maintenance and control of multiple inverters Option

Serial number reading is possible using the optional LCD operation panel (FR-LU08) or the inverter setup software (FR Configurator2). Administration of different inverters has become much more simple.

8

Wide range of lineup

Features

Application Example PLC Function FR Configurator2

Example

Standard

Outline

Diagrams Terminal Specs

Operation Panel

Operation Steps

Parameter List

Protective Functions

Options

LVS/Cables

Precautions

Motors

Wide range of lineup

							-,	, <u> </u>					
5 kW o	or lower	M	Μ	- E	F (5 7	' 1 M	4					
Symbol	Output	Symbol	Output	Symbol	Output	Symbol	Rated speed ⁶¹	Symbol	Voltage class	Symbol	Specifications ⁴²	Symbol	Specifications
7	0.75 kW	75	7.5 kW	30K	30 kW	1M	1500 r/min	None	200 V	None	Standard model	None	Standard mod
15	1.5 kW	11K	11 kW	37K	37 kW			4	400 V	Q	Class B	P1	Outdoor type
22	2.2 kW	15K	15 kW	45K	45 kW	*1: The m	otor can also be use	d for applic	ations which requir	ed the rate	d speed of 1800 r/min.		•
37	3.7 kW	18K	18.5 kW	55K	55 kW		tdoor type and clas						
55	5.5 kW	22K	22 kW										

The motor can be used for applications which required the rated speed of 1500 r/min and 1800 r/min.

• For dedicated motors such as the outdoor type, the long-axis type, the flange type, the waterproof outdoor type, and the corrosion proof type, contact your sales representative.

Rated	l output (kW)	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160
Mc	otor model	7	15	22	37	55	75	11K	15K	18K	22K	30K	37K	45K	55K	-	-	-	-	-
200 V class	MM-EFS[]1M		٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	-	-	-	_	-
400 V class	MM-EFS[]1M4		٠	٠	٠	٠	٠		٠			٠		٠	٠	-	-	-	-	-
200 V class		_	-	_	_	_	_	-	_	_	-	_	-	_	-	٠	-	_	_	-
400 V class	MM-THE4	_	-	_	_	_	_	-	_	_	-	_	-	_	-	٠	٠	٠	٠	

< Note > •The IPM motor MM-EFS/MM-THE4 series cannot be driven by the commercial power supply.

•For IPM motors, the wiring length is 100 m maximum.

•Only one IPM motor can be connected to an inverter.

•For driving an 11 kW or higher MM-EFS motor connected to a belt, contact your sales representative.

•: Released model -: Not applicable

Inverter by rating

•200 V class

		SLD (supe	erlight duty)	LD (light dut	y, initial value)
	r model 820-[]	Motor capacity (kW)#1	Rated current (A)	Motor capacity (kW)*1	Rated current (A)
0.75K	00046	0.75	4.6	0.75	4.2
1.5K	00077	1.5	7.7	1.5	7
2.2K	00105	2.2	10.5	2.2	9.6
3.7K	00167	3.7	16.7	3.7	15.2
5.5K	00250	5.5	25	5.5	23
7.5K	00340	7.5	34	7.5	31
11K	00490	11	49	11	45
15K	00630	15	63	15	58
18.5K	00770	18.5	77	18.5	70.5
22K	00930	22	93	22	85
30K	01250	30	125	30	114
37K	01540	37	154	37	140
45K	01870	45	187	45	170
55K	02330	55	233	55	212
75K	03160	75	316	75	288
90K	03800	90/110	380	90	346
110K	04750	132	475	110	432

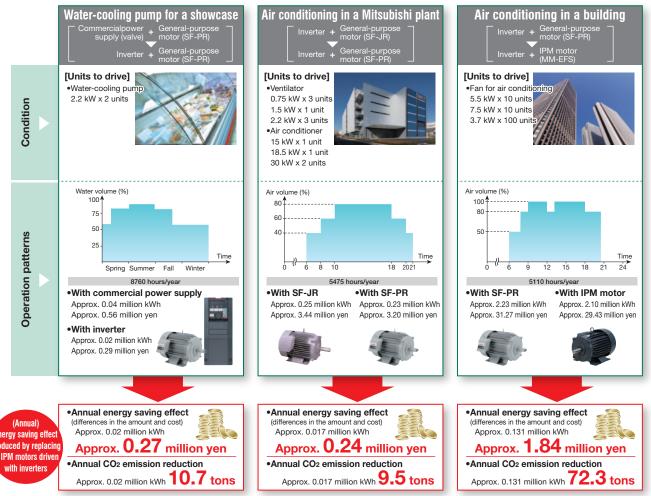
•400 V class

Inventor		SLD (supe	rlight duty)	LD (light duty	y, initial value)	Incontro		SLD (supe	rlight duty)	LD (light duty	, initial value
	r model 84[]-[]	Motor capacity (kW)*1	Rated current (A)	Motor capacity (kW)*1	Rated current (A)		r model 84[]-[]	Motor capacity (kW)∞1	Rated current (A)	Motor capacity (kW)\$1	Rated current (A)
0.75K	00023	0.75	2.3	0.75	2.1	90K	02160	110	216	90	180
1.5K	00038	1.5	3.8	1.5	3.5	110K	02600	132	260	110	216
2.2K	00052	2.2	5.2	2.2	4.8	132K	03250	160	325	132	260
3.7K	00083	3.7	8.3	3.7	7.6	160K	03610	185	361	160	325
5.5K	00126	5.5	12.6	5.5	11.5	185K	04320	220	432	185	361
7.5K	00170	7.5	17	7.5	16	220K	04810	250	481	220	432
11K	00250	11	25	11	23	250K	05470	280	547	250	481
15K	00310	15	31	15	29	280K	06100	315	610	280	547
18.5K	00380	18.5	38	18.5	35	315K	06830	355	683	315	610
22K	00470	22	47	22	43	355K	07700	400	770	355	683
30K	00620	30	62	30	57	400K	08660	450	866	400	770
37K	00770	37	77	37	70	450K	09620	500	962	450	866
45K	00930	45	93	45	85	500K	10940	560	1094	500	962
55K	01160	55	116	55	106	560K	12120	630	1212	560	1094
75K	01800	75/90	180	75	144						

Overload current rating

SLD 110%	60 s, 120% 3 s (inverse-time characteristics) at surrounding air temperature of 40°C
LD 120%	6 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C

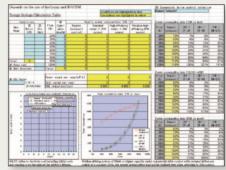
*1: Indicates the maximum capacity applicable with the Mitsubishi 4-pole standard motor.


For selection of the DC reactor and the converter unit, refer to page 107.

Warranty

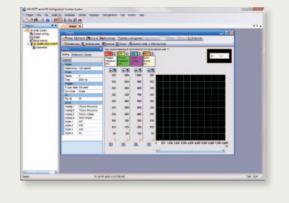
Trial Calculation Example of Energy Saving Effect

The longer the operating period with medium air volume is, the higher energy saving effect obtained with an inverter.


(Conditions: The electricity cost is 14 yen/kWh. The CO₂ emission is 1,000 kWh ≈ 0.55 ton-CO₂)

Your best assistant - Mitsubishi inverter software

IPM energy savings simulation file


The IPM energy savings simulation file calculates the energy saving effect and CO2 reduction rate achieved by replacing commercial power supply (damper/valve control) operation with IPM motor operation by inverter. This file requires inputs such as the capacity, quantity, air volume, and operating time of motors.

IPM energy savings simulation file

FR Configurator2 (SW1DND-FRC2) Option

Support tool for the inverter operations from start-up to maintenance. Refer to page 15 for details.

Application Example

BEST SUITED FOR EVERY MACHINE

Cooling tower

PID control

A sensor monitors a cooling water temperature, which enables the operation corresponding to the target temperature. The system cost can be reduced because no external PID controller is required.

Electronic bypass function

The inverter contains complicated sequence circuits for switching between the commercial power supply operation and inverter operation.

The operation can be automatically switched over to the commercial power supply operation if a fault occurs in the inverter.

Building water pumps

Multi-pump function

By controlling the pumps connected in parallel (up to four pumps) by the PID control by one inverter, water volume, etc. can be adjusted.

PID pre-charge function

The system avoids sudden acceleration at the pump start and prevents the pump from being damaged by water hammer.

Load characteristics measurement function

The system quickly detects faults such as adhesion of foreign matter to the impellers, etc.

Air conditioning of buildings

PM motor control

Driving a PM motor, which is more efficient than an induction motor, achieves more energy savings.

Automatic restart after instantaneous power failure / flying start function

When the power is restored after an instantaneous power failure, the operation can be restarted from the motor coasting speed. Even if a flying start changes the rotation direction, the operation can be smoothly started.

PID control PID forward/reverse action switchover

The forward/reverse rotation under PID control can be switched by turning ON/OFF the signal input, which allows easy switching between the heating and cooling temperature controls.

BACnet®MS/TP

BACnet®MS/TP is a suitable network for use with air conditioning controls. This makes it possible to achieve efficient air conditioning controls with all-in-one management of the air conditioning in the entire building.

Compressor

Advanced optimum excitation control

While saving energy just as with the conventional Optimum excitation control, the new Advanced optimum excitation control provides a large starting torque, which allows for both a large starting torque and energy saving operation.

High-speed operation

- [Maximum output frequency]
- V/F control 590 Hz
- Advanced magnetic flux vector control 400 Hz

FRNN

Terminal Spec

LVS/Cables

Precautions

Motors

PLC Function

FREELY CONTROL MACHINES

The PLC function will help you to provide the control sequence best suited for the machine specifications.

1 Inverter operation sequence customized for the machine

•A set of operations (operation at different signal inputs, signal and monitor outputs at different inverter status, etc.) can be freely programmed in accordance with the machine specifications. For example, a shutter opening/closing can be performed based on a signal from a sensor, or based on the opening/closing times.

Control programs can be created in sequence ladders using the inverter setup software (FR Configurator2).

2 Realizes the decentralized control

 The control of the whole system is decentralized to inverters that mange their subordinating devices individually.

 A group of dedicated sequence programs is created and saved in each inverter. The master controller no longer has to process all the sequence programs, and the decentralized system accepts program changes more flexibly.

3 Automatic operation in accordance with the time

•With the real-time clock, automatic operation can be performed at certain times (when the optional LCD operation panel (FR-LU08) is used).

4 Useful functions

User parameter

Up to 50 parameters, which are linked with the data registers, can be saved. The variables (data registers) used in the PLC function can be saved as inverter parameters. Furthermore, parameter settings can be saved in the EEPROM of inverter. When results of calculation using the PLC function are saved in the parameters, the data can be retained after the power is turned OFF.

User initiated fault

Inverter output can be shut off under conditions other than those of the existing protective functions. Up to five specific fault-initiating conditions can be set to activate a protective function and shut off the inverter output.

Monitored item for the user

Special register values can be displayed for monitoring on the operation panel. Arbitrary data designated by the user such as results of calculation using the PLC function can be displayed.

- **Inverter parameter read/write** Parameter settings can be changed using sequence programs. The acceleration/deceleration patterns can also be set with sequence programs to be changed at certain operation statuses. You can choose RAM or EEPROM to save the parameter settings. When the settings are changed frequently, choose RAM.
- **PID function** Two different loops of PID inverter operations can be pre-set, and those can be controlled using sequence programs.
- Inverter operation lock The inverter operation can be restricted for the command sources other than the sequence programs.

PLC function

Item	Description
I/O	
General-purpose I/O	Sequence programs enable I/O signal transmission to/from the inverter and its plug-in options.
A 1 1/2	Sequence programs enable reading of analog input values or analog output transmission by the inverter,
Analog I/O	and analog output transmission to the plug-in options.
Pulse train I/O	Sequence programs enable pulse train inputs (to terminal JOG) and pulse train outputs (from terminal F/C(FM)).
Inverter parameter read/write	Sequence programs enable inverter parameter write/read.
	Fifty user parameters (Pr.1150 to Pr.1199) are available and are linked with the data registers D206 to D255,
User parameter	which accept direct access by sequence programs.
CC-Link	A plug-in option (FR-A8NC) enables handling of remote registers as arbitrary data in the sequence programs.
Special function	
PID operation	Inverter's PID operations can be set (up to two loops).
User initiated fault	Up to five fault-initiating conditions can be set to activate a protective function.
Fault clear	The protective function occurring in the inverter can be reset.
Inverter operation lock	Inverters can start up while the PLC function is running.
Monitored item for the user	Desired data is displayable on the operation panel.

Features

PLC Function

Outline

Terminal Specs

Diagrams

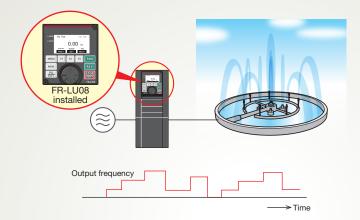
L.S.

LVS/Cables

Precautions

Application Example

Point


Fountain height control

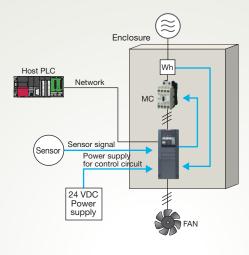
Controlling the water pressure (rotations per minute) allows the fountain height to be changed. PLC programs allow various operation patterns to create a variety of effects.

The time-based automatic operation is possible by using the sequence programs in combination with the real-time clock function (when using an optional LCD operation panel (FR-LU08)).

Inverter parameter read/write

Inverter parameters can be changed through the sequence programs. The height and duration of the spouting water can be set.

Fan control


Point

Signals sent via the enclosure (relay panel, etc.) such as input magnetic contactor signals, watt hour meter signals, and sensor signals can be read directly into the inverter and controlled. A fan can be controlled in accordance with the conditions without using relays, etc. Furthermore, by using an external 24 VDC power source for the control power supply, input machine signals can be turned ON and OFF regardless of whether there is an input power source. And by employing an external 24 VDC power supply for the control power, input machine signals can be turned ON and OFF, regardless of the existence of a main circuit power supply.

CC-Link

A plug-in option (FR-A8NC) enables handling of remote registers as arbitrary data in the sequence programs.

A variety of equipment inside the factory can be centrally controlled with a CC-Link Network.

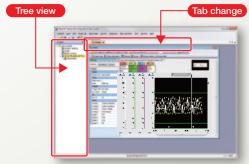
FR Configurator2 (SW1DND-FRC2)

DELIVERING A COMFORTABLE INVERTER

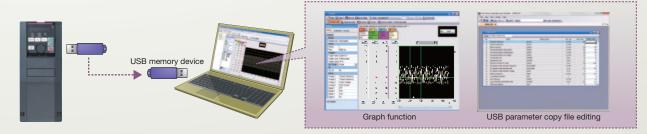
From inverter startup to maintenance, this versatile software allows the user to specify settings easily at the computer.


[Compatible operating systems]

Windows® 7, Windows® 8, Windows® 8.1/Pro/Enterprise (32-bit, 64-bit), Windows Vista® (32-bit), Windows® XP Professional SP3 or later, Windows® XP Home Edition SP3 or later


Easy connection with a USB cable

A USB connector (Mini-B connector) is provided as standard. Easy connection to the computer without the need for a converter.


Intuitive user interface

Connected inverters are displayed in tree view format. Windows for each function can be accessed by changing the tab for maximum efficiency.

Work can be carried out away from the equipment using a USB memory device

By loading trace data and parameter settings copied to a USB memory device into FR Configurator2, analysis and adjustments can be carried out with ease away from the equipment.

Sequence control (Developer function)

The Developer function is used for creating sequence programs and writing them to the inverter to enable the use of the PLC function of the inverter.

DABAIA	+ 2100 Ib 75	のの日本時期のあたた。	C.C.C.A.S.C.A.S.		
A 1 14 1 14	Alternet			LANGE	
Salation		ing birth P			
			ter to be I do not	an among passes	
	PROPERTY AND	1 ing			
J					
BR(feature 1					
O mentions Canada	1.1.2				
i C Destine					
Canel					
a di Persona la Regi	C Deserved Serve				
6 - ⁵ 404	1 Second	Det Los las fam	Indust	an tee	
C D Pagest	1 10.000	100	and the second		-
m (g) state	1				
a frequence					
	-				_
* Internet *	Cincipalities	TRAFT (IN)			
Atres	a second s	and the last		and from	
		-	_		-
Contaction (Institution	111		_		1.000
					-
E Date					
					_
Depart. Read &				_	-
Depart Adult 8 16, 1962 Deptere	-	Dres .			_
Depail Maat 8 16. NAAT Depters	-	And the state of t			
Depart Adult 8 16, 1962 Deptere	- 244		Louis Lond		

Free trial version Supported

The function with the marking above is available in the free trial version (usable free of charge with limited functions). It can be downloaded at Mitsubishi Electric FA Global Website.

Function	Free trial version	Function	Free trial version
Parameter list	0	Convert	0
Diagnosis	0	Developer	×
Graph	×	USB memory	×
Batch monitor	×	parameter copy file edit	
I/O terminal monitor	×	Help	0
Test operation	0	: Available, X: N	lot available

A full functional trial version, which has the same functionality as the release version, is also offered for a limited period of 20 days.

OPERATING ENVIRONMENT

Efficient startup settings

System settings

This sets the method used to connect the inverters and the computer. Automatic recognition of connected inverters can also be set The station number, model, capacity and plug-in options of the connected inverters can also be set manually.

Test operation

Operating commands, frequency settings, and the operating mode can be set for the selected inverter.

Annual Second	1					
Land Land						
Date:	-					
-		-				
					-	
		-				
-	and the second second			-	-	-
		침	-	-	-	
1.5	3 3	1	1	1	-	
2	-	1	1	3	200	
100	-	1	100	111	THE	
12	2 2	1	-	1	3	
-	-					
					C #C	3

Free trial version Supported

Conversion function

Free trial version Supported

Parameters can be set with the parameter auto conversion function when renewing from the FR-F700(P) series or FR-F500 series.

Perform pre-operation adjustments and checks during operation with ease

Parameter list

Parameters for selected station numbers can be displayed and changed.

5.m	er mit finnt finne um firm Be	at case Th farment case Barnery, de	tion in Archive		
20	ats Milais an ar unte Antiete Search	Int last 7	opt this a		
14.	Tarre	Settry range	80.42	Internation International	Tempiete *
	forgue board	818.30	0.1%		
4	Name and Address of the Address of t	8 to 128	0.01%2	100	100
2	Service Requestly	816-08	Line		0
2	Base features	1010 100	0.0192	40	60
۰.	Walk-second setting shiph sconto	3 to 138	2.0mm	45	80
۰.	That append particip crisicip speed	010100	1.01+2	10	
	(Add-agreed sering (inu agreed)	10 to 100	2.044	-10	-10
1	Acceleration tells	10 to 2000	618		
۰.	Deceleration lane	10 to 1000	014		
	Andreast Rooms 717 (State	10.075		7.64	1.64

I/O signals can be assigned using settings by function.

USB memory device parameter copy file editing

Parameter settings (USB memory device parameter copy file) read from the inverter to a USB memory device can be edited.

3

Easy-to-follow platform facilitates easy maintenance

Diagnosis (faults history) Inverter faults history can be read

and displayed together with the

Activating faults can be displayed,

and inverters can also be reset.

alarm occurrence time.

Free trial version Supported

Transmiss (barrent		-
	Color Land	
No. Terretaria da sector Terretaria da la sector	Tea Tea Ion Ion J. Rogari Sciences 1 Anna 1 Anna 1 Anna 1 Anna 1 1 Anna 1 Anna 1 Anna 1 1 Anna 1 Anna 1 Anna 1 1 Anna 1 Anna 1 1 Anna 1 Anna 1 1 An	
		. 1
T in succession of a city of the		-

Help

Displays the content of inverter and software instruction manuals.

Free trial version Supported

Graph function

Inverter data can be sampled and displayed in a graphical format. Trace data can also be read and displayed in a graph.

Life diagnosis

Life information read from the inverter is displayed. Check marks appear in the life alarm fields of inverter parts that have exceeded their replacement schedule. Diagnosis results can also be output to a file.

Each models	
fantase stor in Asachegist si 🖉 🖉 Bease 🦉	- Georg
No. Barn	8.0
1 Dybyt Reputity	120 0040
2 Output current	6 35A
3. Output voltage	0.04
& Frequency setting value	120.00142
6 Speedmachine speed	2500-114
& Mater Larges	0.0%
7 Convertor adapt village	474
8 Expension trains fully	0.0%
5 Electronic thermal OL relay load factor	0.0%
10 Output sument peak raise	6.004
17 Cometter subpli voltage peak raise	4.01
12 hoped prover	E 00-0
13 Output power	8-DOKA
54 Load meter	0.0%
15 Meter excitation current	E 00A
16 Poston palee	
17 Consister energization time	10404

Offline auto tuning

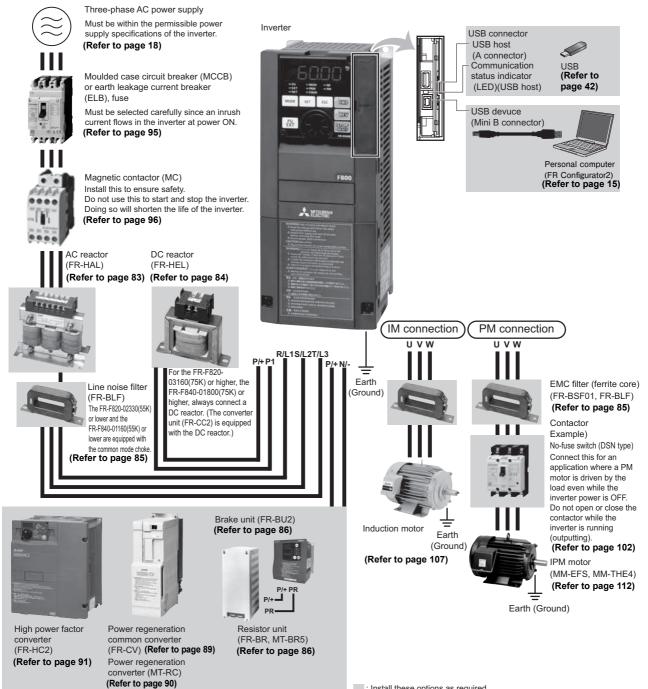
Batch monitor function

monitored simultaneously.

status can be monitored.

Multiple inverter monitor items can be

With a terminal monitor, the ON/OFF


Tuning is performed in wizard format after specifying necessary parameter settings.

LVS/Cables

Options

Connection example for standard models

: Install these options as required.

Features

Connection

Standard

Outline

neter

Protective Functions

Options

LVS/Cables

Precautions

Motors

Rating (Standard model)

200 V class

×

	Model	FR-F820-[]	00046	00077	00105	00167	00250	00340	00490	00630	00770	00930	01250	01540	01870	02330	03160	03800	04750
			0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K	30K	37K	45K	55K	75K	90K	110K
	plicable motor	SLD	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90/110	132
ca	pacity (kW) *1	LD	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
	Rated capacity	SLD	1.8	2.9	4	6.4	10	13	19	24	29	35	48	59	71	89	120	145	181
	(kVA) *2	LD	1.6	2.7	3.7	5.8	8.8	12	17	22	27	32	43	53	65	81	110	132	165
_	Rated current	SLD	4.6	7.7	10.5	16.7	25	34	49	63	77	93	125	154	187	233	316	380	475
Output	(A)	LD	4.2	7	9.6	15.2	23	31	45	58	70.5	85	114	140	170	212	288	346	432
õ	Overload	SLD	110% 6	110% 60 s, 120% 3 s (inverse-time characteristics) at surrounding air temperature of 40°C															
current rating *3 LD 120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C																			
	Rated voltage *	4	Three-p	Three-phase 200 to 240 V															
	Rated input AC voltage/frequency		Three-p	Three-phase 200 to 240 V 50 Hz/60 Hz															
≻	Permissible AC	voltage fluctuation	170 to 2	264 V 50	Hz/60 H	z													
upply	Permissible fre	quency fluctuation	±5%	±5%															
er sı	Rated input	SLD	5.3	8.9	13.2	19.7	31.3	45.1	62.8	80.6	96.7	115	151	185	221	269	316	380	475
No.	current (A) *5	LD	5	8.3	12.2	18.3	28.5	41.6	58.2	74.8	90.9	106	139	178	207	255	288	346	432
ш	Power supply	SLD	2	3.4	5	7.5	12	17	24	31	37	44	58	70	84	103	120	145	181
	capacity (kVA) *6	LD	1.9	3.2	4.7	7	11	16	22	29	35	41	53	68	79	97	110	132	165
Pro	tective structure	e (IEC 60529) *7	Enclose	use type (IP20) Open type (IP00)															
Со	oling system		Self-cod	oling	Forced	air coolir	ng												
Approx. mass (kg)			1.9	2.1	3.0	3.0	3.0	6.3	6.3	8.3	15	15	15	22	42	42	54	74	74

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4-pole standard motor.

*2 The rated output capacity indicated assumes that the output voltage is 220 V for 200 V class.
 *3 The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter

and motor to return to or below the temperatures under 100% load.

*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.

*5 The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the rated input current.

*6 The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input reactor and cables).

*7 FR-DU08: IP40 (except for the PU connector section)

400 V class

		el FR-F840-[]	00023	00038	00052	00083	00126	00170	00250	00310	00380	00470	00620	00770	00930	01160	01800	02160	02600	03250	03610	04320	04810	05470	06100	06830
	WOO	ei FR-F840-[]	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K	30K	37K	45K	55K	75K	90K	110K	132K	160K	185K	220K	250K	280K	315K
Ap	plicable motor	SLD	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75/ 90	110	132	160	185	220	250	280	315	355
ca	pacity (kW) *1	LD	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	280	315
	Rated	SLD	1.8	2.9	4	6.3	10	13	19	24	29	36	47	59	71	88	137	165	198	248	275	329	367	417	465	521
	capacity (kVA) *2	LD	1.6	2.7	3.7	5.8	8.8	12	18	22	27	33	43	53	65	81	110	137	165	198	248	275	329	367	417	465
ŧ	Rated current	SLD	2.3	3.8	5.2	8.3	12.6	17	25	31	38	47	62	77	93	116	180	216	260	325	361	432	481	547	610	683
Output	(A)	LD	2.1	3.5	4.8	7.6	11.5	16	23	29	35	43	57	70	85	106	144	180	216	260	325	361	432	481	547	610
0	Overioad	SLD	110%	60 s,	120%	3 s (i	nverse	e-time	chara	cteris	tics) at	surro	unding	g air te	emper	ature o	of 40°0	2								
	current rating *3	LD	120%	60 s,	150%	3 s (i	nverse	e-time	chara	cteris	tics) a	t surro	unding	g air te	emper	ature	of 50°(С								
	Rated voltage	*4	Three	e-phas	e 380	to 50	D V C																			
	Rated input AC voltage/fre	equency	Three	e-phas	e 380	to 50	0 V 50	Hz/60) Hz *	8																
>	Permissible A	C voltage fluctuation	323 to	o 550	V 50 F	Iz/60	Hz																			
upply	Permissible fr	equency fluctuation	±5%																							
ers	Rated input	SLD	3.2	5.4	7.8	10.9	16.4	22.5	31.7	40.3	48.2	58.4	76.8	97.6	115	141	180	216	260	325	361	432	481	547	610	683
Dower	current (A) *5	LD	3	4.9	7.3	10.1	15.1	22.3	31	38.2	44.9	53.9	75.1	89.7	106	130	144	180	216	260	325	361	432	481	547	610
Ľ	Power supply	SLD	2.5	4.1	5.9	8.3	12	17	24	31	37	44	59	74	88	107	137	165	198	248	275	329	367	417	465	521
	capacity (kVA) *6	LD	2.3	3.7	5.5	7.7	12	17	24	29	34	41	57	68	81	99	110	137	165	198	248	275	329	367	417	465
Pro	otective structu	re (IEC 60529) *7	Enclo	se typ	e (IP2	:0)								Open type (IP00)												
Со	oling system		Self-c	cooling	3	Force	ed air o	cooling	3					•												
Ap	prox. mass (kg	1)	2.5	2.5	2.5	3.0	3.0	6.3	6.3	8.3	8.3	15	15	23	41	41	43	52	55	71	78	117	117	166	166	166

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4-pole standard motor.

*2 The rated output capacity indicated assumes that the output voltage is 440 V for 400 V class.

*3 The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load.

*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$

point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$. *5 The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the rated input current.

*6 The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input reactor and cables).

*7 FR-DU08: IP40 (except for the PU connector section)

*8 For the power voltage exceeding 480 V, set Pr.977 Input voltage mode selection.

. . . .

Standard

Rating (separated converter type)

400 V class

 Invert 	er
----------------------------	----

	Madel ED I	-949 []	07700	08660	09620	10940	12120						
	Model FR-F	-042-[]	355K	400K	450K	500K	560K						
Appli	cable motor capacity	SLD	400	450	500	560	630						
(kŴ)		LD	355	400	450	500	560						
F	Rated capacity (kVA)	SLD	587 660 733		733	834	924						
*	2	LD	521	587	660	733	834						
		SLD	770	866	962	1094	1212						
F	Rated current (A)	LD	683	770	866	962	1094						
5	Overload current	SLD	110% 60 s, 120% 3 s	10% 60 s, 120% 3 s (inverse-time characteristics) at surrounding air temperature of 40°C									
Output	ating *3	LD	120% 60 s, 150% 3 s	(inverse-time characte	eristics) at surrounding	air temperature of 50°	°C						
O F	Rated voltage *4		Three-phase 380 to 5	00 V									
t (Regenerative braking torque *5 (When the converter unit (FR-CC2) is used) Maximum brake torque		10% torque/continuou	IS									
ler	DC power supply volt	age	430 to 780 VDC										
power	Control power supply	auxiliary input	Single phase 380 to 500 V 50 Hz/60 Hz *7										
	Permissible control ponput fluctuation	ower supply auxiliary	Frequency ±5%, voltage ±10%										
Prote	ctive structure (IEC 6	60529) *6	Open type (IP00)										
Cooling system			Forced air cooling										

The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4-pole standard motor. *1

*2 *3

The rated output capacity indicated assumes that the output voltage is 440 V. The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. *4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However,

the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.

*5 LD rating reference value FR-DU08: IP40 (except for the PU connector section) *6

*7 For the power voltage exceeding 480 V, set Pr.977 Input voltage mode selection.

Converter unit (FR-CC2)

	Model FR-CC2-H[]	355K	400K	450K	500K	560K	630K				
App	blicable motor capacity (kW)	355	400	450	500	560	630				
Output	Overload current rating *1	200% 60 s, 250%	3 s		150% 60 s, 200% 3 s	120% 60 s, 150% 3 s	110% 60 s, 120% 3 s				
Rated voltage *2 430 to 780 VDC *4						<u> </u>	<u> </u>				
_	Rated input AC voltage/frequency	Three-phase 380 to 500 V 50 Hz/60 Hz									
supply	Permissible AC voltage fluctuation	Three-phase 323 to 550 V 50 Hz/60 Hz									
er su	Permissible frequency fluctuation	±5%									
Power	Rated input current (A)	683	770	866	962	1094	1212				
۵.	Power supply capacity (kVA) *3	521	587	660	733	833	924				
Pro	tective structure (IEC 60529)	Open type (IP00)									
Coc	bling system	Forced air cooling									
DC	reactor	Built-in									
App	prox. mass (kg)	213	282	285	288	293	294				

The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time *1 for the converter unit and the inverter to return to or below the temperatures under 100% load. *2

The converter unit output voltage varies according to the input power supply voltage and the load. The maximum point of the voltage waveform at the converter unit output side is approximately the power supply voltage multiplied by $\sqrt{2}$. The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input

*3 reactor and cables).

The permissible voltage imbalance ratio is 3% or less. (Imbalance ratio = (highest voltage between lines - average voltage between three lines) / average *4 voltage between three lines \times 100)

LVS/Cables

Precautions

Motors

• Common specifications

-											
	Contr	rol met	hod	Soft-PWM control, high carrier frequency PWM control (selectable among V/F control (Optimum excitation control), Advanced magnetic flux vector control (Advanced optimum excitation control) and PM motor control)							
	Outp	out freat	uency range	0.2 to 590 Hz (The upper-limit frequency is 400 Hz under Advanced magnetic flux vector control, and PM motor control.)							
	-	uency		0.015 Hz/60 Hz (terminal 2, 4: 0 to 10 V/12 bits)							
	settin	ng	Analog input	0.03 Hz/60 Hz (0 to 5 V/11 bits or 0 to 20 mA/approx. 11 bits for terminals 2 and 4, 0 to \pm 10 V/12 bits for terminal 1) 0.06 Hz/60 Hz (0 to \pm 5 V/11 bits for terminal 1)							
s			Digital input	0.01 Hz							
io			Analog input	Within ±0.2% of the max. output frequency (25°C ±10°C)							
cat	accui		Digital input	Vithin 0.01% of the set output frequency							
Control specifications		acteristics		Base frequency can be set from 0 to 590 Hz. Constant-torque/variable-torque pattern or adjustable 5 points V/F can be selected.							
rol sp	Starti torqu	ing Ie	Induction motor	120% 0.5 Hz (Advanced magnetic flux vector control)							
u ti			IPM motor	50%							
ŭ		ue boos		Manual torque boost							
			n/deceleration	0 to 3600 s (acceleration and deceleration can be set individually), linear or S-pattern acceleration/deceleration mode, backlash countermeasures acceleration/deceleration can be selected.							
		time setting DC injection brake (induction motor)									
	(indu			peration frequency (0 to 120 Hz), operation time (0 to 10 s), operation voltage (0 to 30%) variable							
	Stall level	-	tion operation	ctivation range of stall prevention operation (SLD rating: 0 to 120%, LD rating: 0 to 150%). Whether to use the stall revention or not can be selected. (V/F control, Advanced magnetic flux vector control)							
	Frequ settin		Analog input	Terminals 2 and 4: 0 to 10 V, 0 to 5 V, 4 to 20 mA (0 to 20 mA) are available. Terminal 1: -10 to +10 V, -5 to 5 V are available.							
	signa	al	Digital input	Input using the setting dial of the operation panel or the parameter unit Four-digit BCD or 16-bit binary (when used with option FR-A8AX)							
	Start	Start signal		Forward and reverse rotation or start signal automatic self-holding input (3-wire input) can be selected.							
su	Input signals (twelve terminals)			Low-speed operation command, Middle-speed operation command, High-speed operation command, Second function selection, Terminal 4 input selection, Jog operation selection, Output stop, Start self-holding selection, Forward rotation command, Reverse rotation command, Inverter reset The input signal can be changed using Pr.178 to Pr.189 (input terminal function selection) .							
tio	P	ulse tra	ain input	00 kpps faximum and minimum frequency settings, multi-speed operation, acceleration/deceleration pattern, thermal protection,							
Operation specifications	Opera	rational	functions	DC injection brake, starting frequency, JOG operation, output stop (MRS), stall prevention, regeneration avoidance, increased magnetic excitation deceleration, DC feeding+1, frequency jump, rotation display, automatic restart after instantaneous power failure, electronic bypass sequence, remote setting, retry function, carrier frequency selection, fast- response current limit, forward/reverse rotation prevention, operation mode selection, slip compensation, speed smoothing control, traverse, auto tuning, applied motor selection, RS-485 communication, PID control, PID pre-charge function, cooling fan operation selection, stop selection (deceleration stop/coasting), power-failure deceleration stop function, PLC function, life diagnosis, maintenance timer, current average monitor, multiple rating, test run, 24 V power supply input for control circuit, safety stop function, self power management, BACnet communication, PID gain tuning, cleaning, load characteristics storage, emergency drive+1							
	_ 0)nen co	llector output								
	(five terminals)		· · · · · · · · · · · · · · · · · · ·	Inverter running, Up to frequency, Instantaneous power failure/undervoltage*1, Overload warning, Output frequency							
	(fi R (t)	Relay ou	itput	detection, Fault The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector.							
	utput sig	Relay ou two tern	itput ninals) ain output	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) .							
		two tern Pulse tra FM type	ntput ninals) ain output) Pulse train output (FM type)	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection .							
tion		two tern Pulse tra FM type	ntput ninals) ain output) Pulse train output (FM type)	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency)							
lication		two tern Pulse tra FM type	ntput ninals) ain output) Pulse train output (FM type) Current output	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage)							
Indication	For m	two term Pulse tra FM type neter	ntput ninals) ain output Pulse train output (FM type) Current output (CA type) Voltage output Operating	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage) The monitored item can be changed using Pr.158 AM terminal function selection . Output frequency, output current, output voltage, frequency setting value							
Indication	For m Opera	telay ou two tern Pulse tra FM type neter	ntput ninals) ain output Pulse train output (FM type) Current output (CA type) Voltage output	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage) The monitored item can be changed using Pr.158 AM terminal function selection . Output frequency, output current, output voltage, frequency setting value The monitored item can be changed using Pr.52 Operation panel main monitor selection . Fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output							
Indication	For m Opera	Relay ou two tern Pulse tra FM type neter neter	ntput ninals) ain output) Pulse train output (FM type) Current output (CA type) Voltage output Operating status	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection). Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage) The monitored item can be changed using Pr.158 AM terminal function selection . Output frequency, output current, output voltage, frequency setting value The monitored item can be changed using Pr.52 Operation panel main monitor selection . Fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output voltage/current/frequency/cumulative energization time/year/month/date/time) are saved.							
Pro	For m Opera	Relay ou two term Pulse tra FM type neter ration I DU08)	ntput ninals) ain output) Pulse train output (FM type) Current output (CA type) Voltage output Operating status	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection). Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage) The monitored item can be changed using Pr.158 AM terminal function selection . Output frequency, output current, output voltage, frequency setting value The monitored item can be changed using Pr.52 Operation panel main monitor selection . Fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output voltage/current/frequency/cumulative energization time/year/month/date/time) are saved. Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip (electronic thermal relay function), Motor overload trip (electronic thermal relay function), Heatsink overheat, Instantaneous power failure-1, Undervoltage-1, Input phase loss.+:2, Stall prevention stop, Loss of synchronism detection-2, Upper limit fault detection, Lower limit fault detection, Output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay operation-2, PTC thermistor operation-2, Option fault, Communication option fault, Parameter storage device fault, PU elisonnection, Retry count							
Pro	Opera panel (FR-D	Relay ou two term Pulse tra FM type neter ration H DU08)	ntput ninals) ain output Pulse train output (FM type) Current output (CA type) Voltage output Operating status Fault record	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage) The monitored item can be changed using Pr.158 AM terminal function selection . Output frequency, output current, output voltage, frequency setting value The monitored item can be changed using Pr.52 Operation panel main monitor selection . Fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output voltage/current/frequency/cumulative energization time/year/month/date/time) are saved. Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during acceleration, Regenerative overvoltage trip during constant speed, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip (electronic thermal relay function), Motor overload trip (electronic thermal relay function), Heatsink overheat, Instantaneous power failure-1, Undervoltage-1, Input phase loss-1+2, Stall prevention stop, Loss of synchronism detection-2, Upper limit fault detection, Lower limit fault detection, output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay operation-2, PTC thermistor operation+2, Option fault, Communication option fault, Parameter storage device fault, PU disconnection, Retry count excess+2, CPU fault, Operation panel power supply short circuit/RS-485 terminals power supply short circuit, 24 VDC power fault, JDS communication fault, Safety circuit fault, Overspeed occurrence-2, 4 mA input fault-2, Pre-charge							
Prowa	Opera panel (FR-D	Relay ou two term Pulse tra FM type neter ration d DU08) re/	Animals) aninals) aninoutput Pulse train output (FM type) Current output (CA type) Voltage output Operating status Fault record Protective function Warning function g air	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection). Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Output frequency, output current, output voltage, frequency setting value The monitored item can be changed using Pr.52 Operation panel main monitor selection . Fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output voltage/current/frequency/cumulative energization time/year/month/date/time) are saved. Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during acceleration, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip (electronic thermal relay function), Heatsink overheat, Instantaneous power failure+1, Undervoltage+1, Input phase loss+1=2, Stall prevention stop, Loss of synchronism detection-2, Upper limit fault detection, Lower limit fault detection, Output side earth (ground) fault overcurrent, Output short circuit, Output shost circuit/RS-485 terminals power supply short circuit, 24 VDC power fault, Abnormal output current, Output short circuit, auti+1, Communication fault (inverter), Analog input fault, JDs communication fault, Safety circuit fault, Overspeed occurrence+2, 4 mA input fault=2, Pre-charge fault+2, PID signal fault+2, Internal circuit fault, User definition error in the PLC function Fan alar							
Prowa	Opera panel (FR-D	Relay ou two term Pulse tra FM type neter ration PU08)	Animals) aninals) aninoutput Pulse train output (FM type) Current output (CA type) Voltage output Operating status Fault record Protective function Warning function g air	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection). Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage) The monitored item can be changed using Pr.158 AM terminal function selection . Output frequency, output current, output voltage, frequency setting value The monitored item can be changed using Pr.152 Operation panel main monitor selection . Fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output voltage/current/frequency/cumulative energization time/year/month/date/time) are saved. Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip (electronic thermal relay function), Motor overload trip (electronic thermal relay function), Heatsink overheat, Instantaneous power failure-1, Undervoltage-1, Input phase loss-1=2, Stall prevention stop, Loss of synchronism detection-2. Upper limit fault detection, Lover limit fault detection, Jouput side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay operation-2, PTC thermistor operation-2, Option fault, Communication option fault, Parameter storage device fault, PU disconnection-2, Lyper limit fault detection, Lower fault, Abnormal output current detection-2, Inrush current limit circuit fault+1, Communication fault (inverter), Analog input fault, USB communication fault, Safety circuit fault, Overspeed occurrence-2, 4 mA input fault-2, Pre-charge fault-2, PID stop, Parameter cory, Safety stop, Maintenance timer 1 to 3							
Prowa	For m Opera panel (FR-D otective rning action	Relay ou two term Pulse tra FM type neter ration DU08) re/	Animals) anin output Pulse train output (FM type) Current output (CA type) Voltage output Operating status Fault record Protective function Warning function g air g air humidity	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output outge) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Output frequency, output ourrent, output voltage, frequency setting value The monitored item can be changed using Pr.58 AM terminal function selection . Output frequency, output current, output voltage, frequency setting value The monitored item can be changed using Pr.58 AM terminal function selection . Fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output voltage/current/frequency/cumulative energization time/year/month/date/time) are saved. Overcurrent trip during acceleration, overcurrent trip during constant speed, Regenerative overvoltage trip during acceleration, regenerative overvoltage trip during constant speed, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip (electronic thermal relay function), Hoas Ioss-1+2, Stall prevention stop, Loss of synchronism detection-2, Upper limit fault detection, Lower limit fault detection, Output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay operation-2, PTC thermistor fault, Abnormal output current detection-2, Inrush current limit circuit fault-1, Communication fault, Safety circuit fault, Overspeed occurrence: 2, 4 mA input fault-2, Pre-charge fault-2, PID signal fault-2, Internal circuit fault, User definition error in the PLC function Fan alarm, Stall prevention (overcurrent), Stall prevention (overvoltage), Electronic thermal rela							
Prowa	Opera panel (FR-D otective rning action Surro tempo Surro Stora	Relay ou two term Pulse tra FM type neter ration d DU08) re/ re/ ounding perature ounding age tem	Animals) anin output anin output Pulse train output (FM type) Current output (CA type) Voltage output Operating status Fault record Protective function Warning function g air g air humidity perature+3	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection). Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output ourrent) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output voltage) The monitored item can be changed using Pr.158 AM terminal function selection . Output frequency, output current, output voltage, frequency setting value The monitored item can be changed using Pr.158 AM terminal function selection . Output frequency, output current, output voltage, frequency setting value The monitored item can be changed using Pr.158 AM terminal function selection . Fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output voltage/current/frequency/cumulative energization time/year/month/date/time) are saved. Overcurrent trip during acceleration, Overcurrent trip during constant speed, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip (electronic thermal relay function), Motor overload trip (electronic thermal relay function), Heatsink overheat, Instantaneous power failure-1, Undervoltage-1, Input phase loss-1-2, Stall prevention stop, Loss of synchronism detection-2, Upper limit fault detection, Output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External hermal relay operation-2, PTC thermistor operation-2, Option fault, Operation panel power supply short circuit/R2-485 terminals power supply short circuit, 24 VDC power fault, Abnormal output current detection-2, Upper limit fault detection, Output side earth (ground) fault overcurrent), Stall prevention (overvoltage), Electronic thermal relay function pre-alarm, PU stop, Parameter copy, Stafety stop, Maintenance t							
Pro	For m Opera panel (FR-D otective rning oction Surro tempo Surro Stora Atmo	Relay ou two term Pulse tra FM type neter ration DU08) re/	Arborn and a second sec	The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector. 50 kpps Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 20 mADC: one terminal (output current) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Max. 10 VDC: one terminal (output outge) The monitored item can be changed using Pr.54 FM/CA terminal function selection . Output frequency, output output voltage) The monitored item can be changed using Pr.58 AM terminal function selection . Output frequency, output ourrent, output voltage, frequency setting value The monitored item can be changed using Pr.58 Operation panel main monitor selection . Fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output voltage/current/frequency/cumulative energization time/year/montth/date/time) are saved. Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during acceleration, Regenerative overvoltage trip during constant speed, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip (electronic thermal relay function), Motor overload trip (electronic thermal relay function), Heatsink overheat, Instantaneous power failure=1, Undervoltage=1, Input phase loss=1=2, Stall prevention stop, Loss of synchronism detection=2, Upper limit fault detection, Lower limit fault detection, Output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay function, Retry count excess=2, CPU fault, Operation panel power supply short circuit/RS-485 terminals power supply short circuit, 24 VDC power fault, Abnormal output current detection=2, Inrush current limit circuit fault-1, Communication fault, Safet							

- Available only for the standard model. *1
- This protective function is not available in the initial status. Temperature applicable for a short time, e.g. in transit. For the installation at an altitude above 1,000 m (up to 2,500 m), derate the rated current 3% per 500 m. *2 *3 *4
- 2.9 m/s² or less for the FR-F840-04320(185K) or higher. *5

• PLC function specifications

Х

	lterr	ı	F800 PLC function specifications					
Control m	ethod		Repeated operation (by stored program)					
I/O contro	ol mode		Refresh					
Programn	ning language		Relay symbolic language (ladder) Function block					
No. of	Sequence inst	tructions	25					
instructio	Basic instructi	ions	84					
ns	Application ins	structions	37					
Processin	ig speed		Sequence instructions 1.9 µs to 12 µs/step*1					
Number c	of I/O device po	bints	128 (input: 64 points, output: 64 points) 19 points built-in (input: 12 points, output: 7 points)*2 FR-A8AX (input: 16 points) FR-A8AY (output: 7 points) FR-A8AR (output: 3 points)					
Number c	of analog I/O po	oints	3 input points built-in (Terminals 1, 2, and 4) 2 output points built-in (Terminals FM/CA and AM), FR-A8AY: 2 output points (AM0 and AM1)					
Pulse trai	~ 1/0	Input	Terminal JOG maximum input pulse: 100k pulses/s *3					
Puise trai	11/0	Output	Terminal FM maximum output pulse: 50k pulses/s *3					
Watchdog	g timer		10 to 2000 ms					
Program	capacity		6K steps (24K bytes) (0 to 6144 steps can be set) Contained in one program					
	Internal relay	(M)	128 (M0 to M127)					
	Latch relay (L)	Not used (Can be set with parameters but will not latch)*4					
		Number of points	16 (T0 to T15)					
	Timer (T)	Specifications	100 ms timer: 0.1 to 3276.7 s can be set 10 ms timer: 0.01 to 327.67 s can be set 100 ms retentive timer: 0.1 to 3276.7 s can be set					
Device		Number of points	16 (C0 to C15)					
	Counter (C)	Specifications	Normal counter: Setting range 1 to 32767 Interrupt program counter: Not used					
	Data register	(D)	256 (D0 to D255)					
	Special relay ((SM)	2048 (SM0 to SM2047) with limited functions					
	Special registe	er (SD)	2048 (SD0 to SD2047) with limited functions					

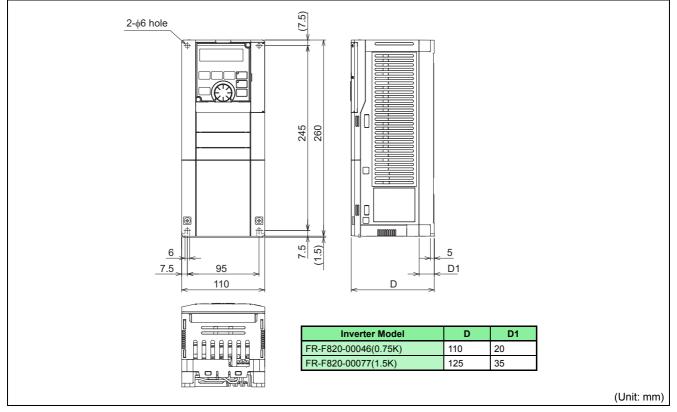
The scan time is approximately 40 ms for 1K steps as inverter control is also performed in actual operations. The signals same as the ones assigned to the inverter I/O terminals are used. One point is always required for a sequence start (RUN/STOP). *1 *2

*3 *4

Pr.291 Pulse train I/O selection must be set. There is no device latch function for power failures. Use the Pr.1150 to Pr.1199 PLC function user parameters 1 to 50 (D206 to D255) to store device values in the EEPROM.

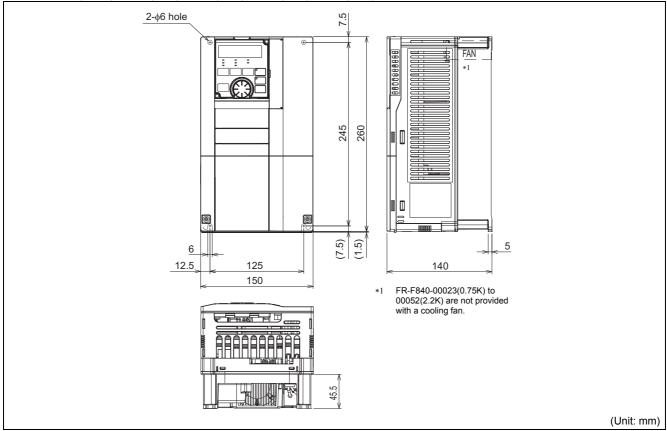
• There is no buffer memory.

Features

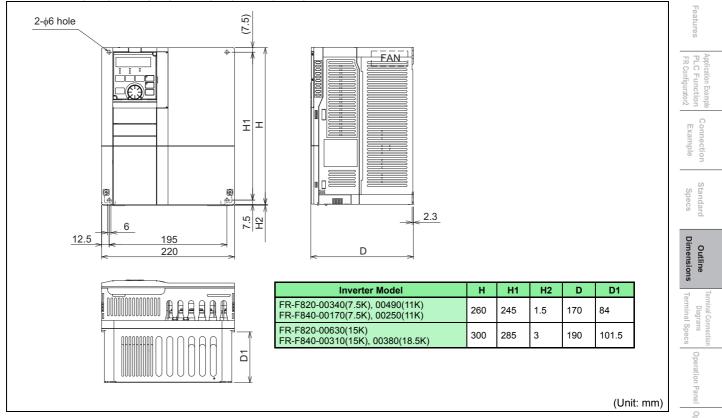

Terminal Specs

Precautions

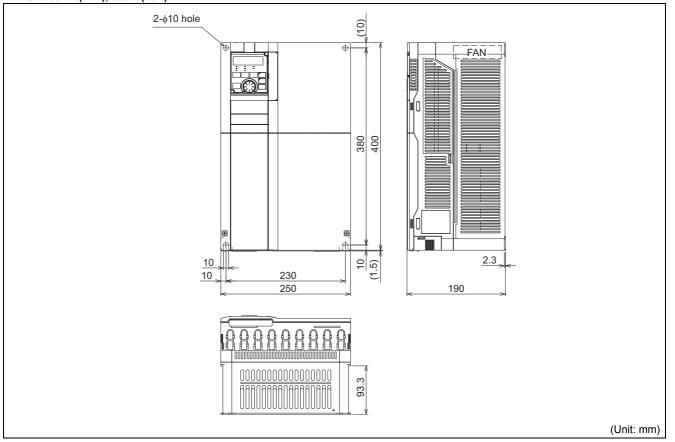
Motors


• Standard model

FR-F820-00046(0.75K), FR-F820-00077(1.5K)



FR-F820-00105(2.2K), 00167(3.7K), 00250(5.5K) FR-F840-00023(0.75K), 00038(1.5K), 00052(2.2K), 00083(3.7K), 00126(5.5K)



FR-F820-00340(7.5K), 00490(11K), 00630(15K) FR-F840-00170(7.5K), 00250(11K), 00310(15K), 00380(18.5K)

X

FR-F820-00770(18.5K), 00930(22K), 01250(30K) FR-F840-00470(22K), 00620(30K)

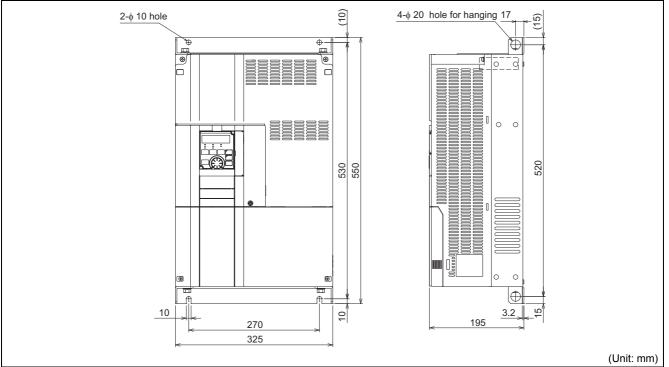
Warranty Inquiry

Paran

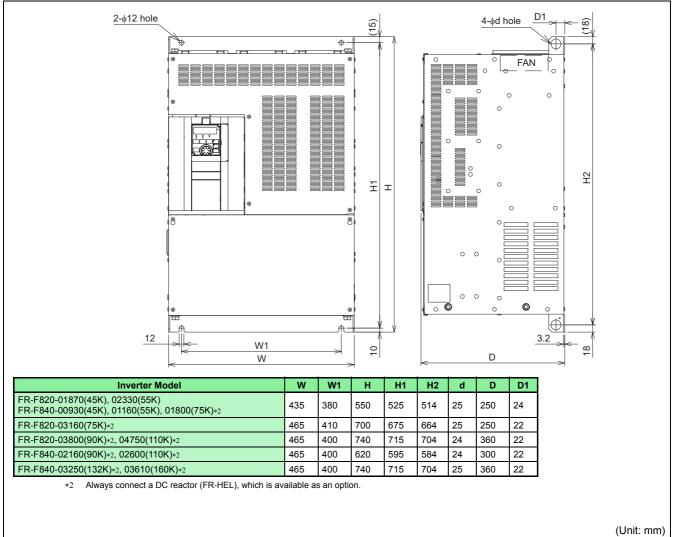
LIS!

Protective Functions

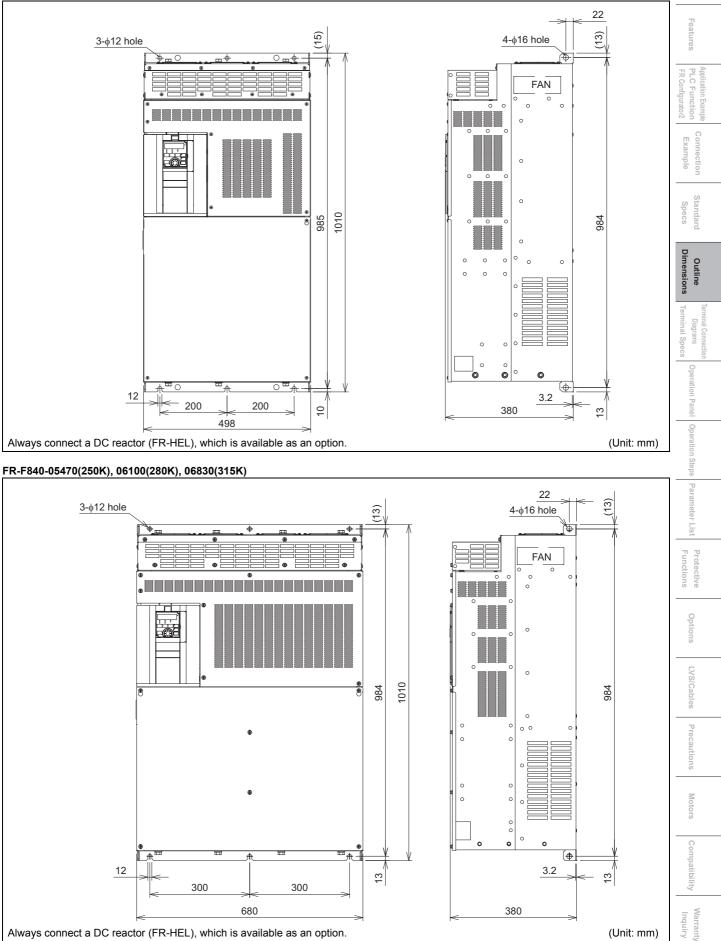
Options


LVS/Cables

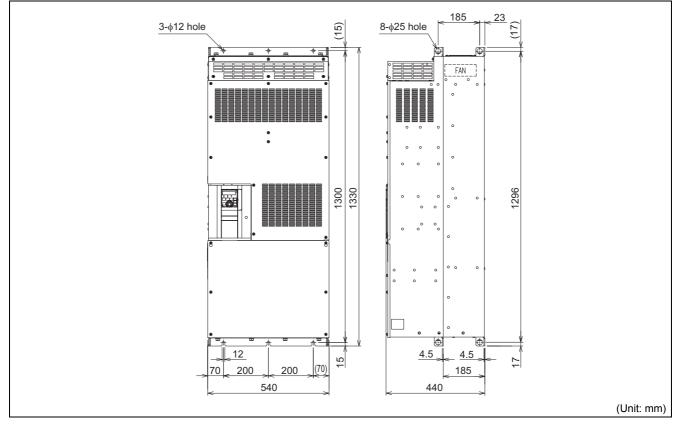
Precautions


Motors

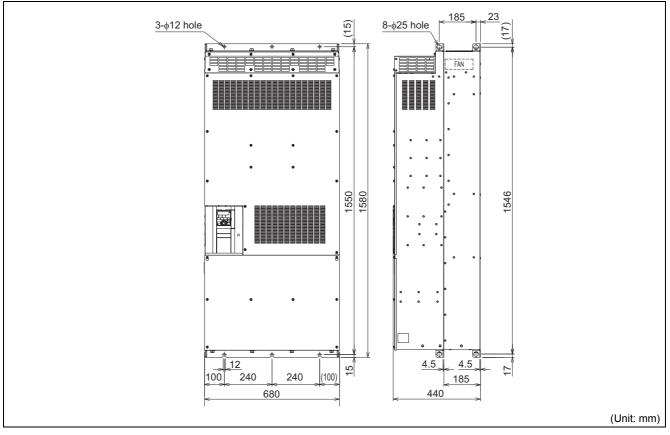
FR-F820-01540(37K) FR-F840-00770(37K)

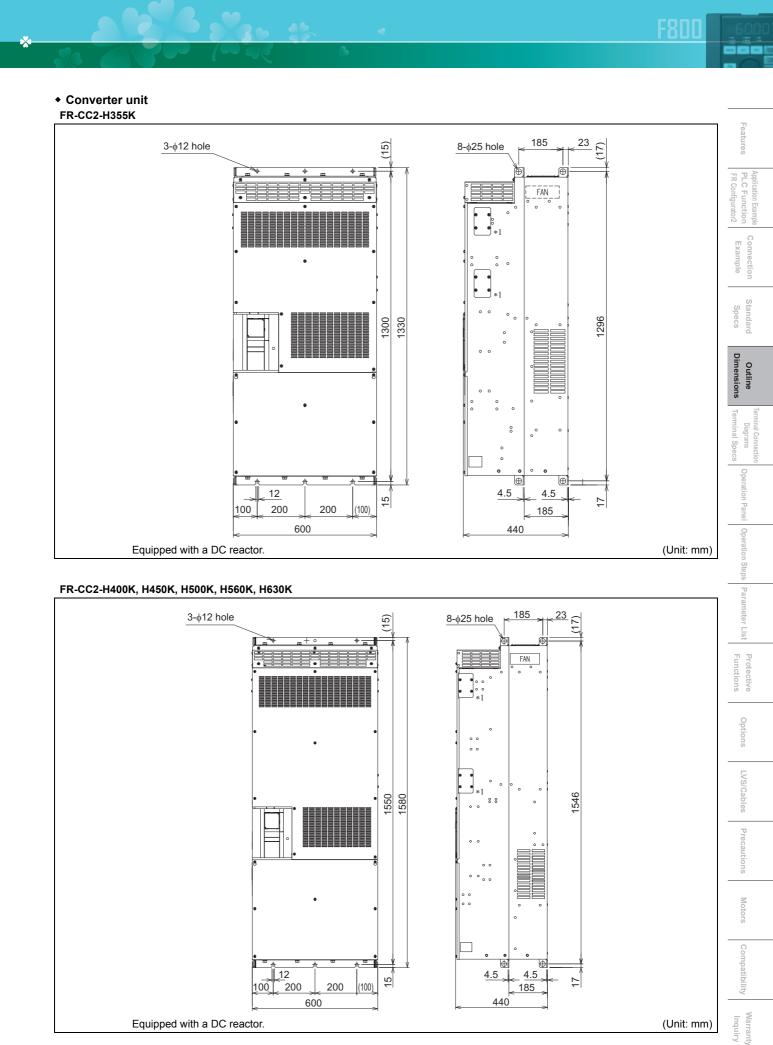


FR-F820-01870(45K), 02330(55K), 03160(75K), 03800(90K), 04750(110K) FR-F840-00930(45K), 01160(55K), 01800(75K), 02160(90K), 02600(110K), 03250(132K), 03610(160K)

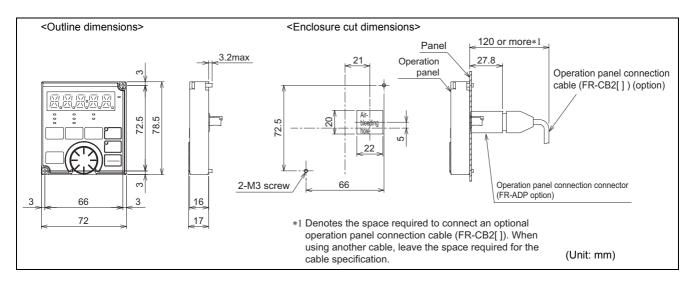

FR-F840-04320(185K), 04810(220K)

• Separated converter type


Inverter


FR-F842-07700(355K), 08660(400K)

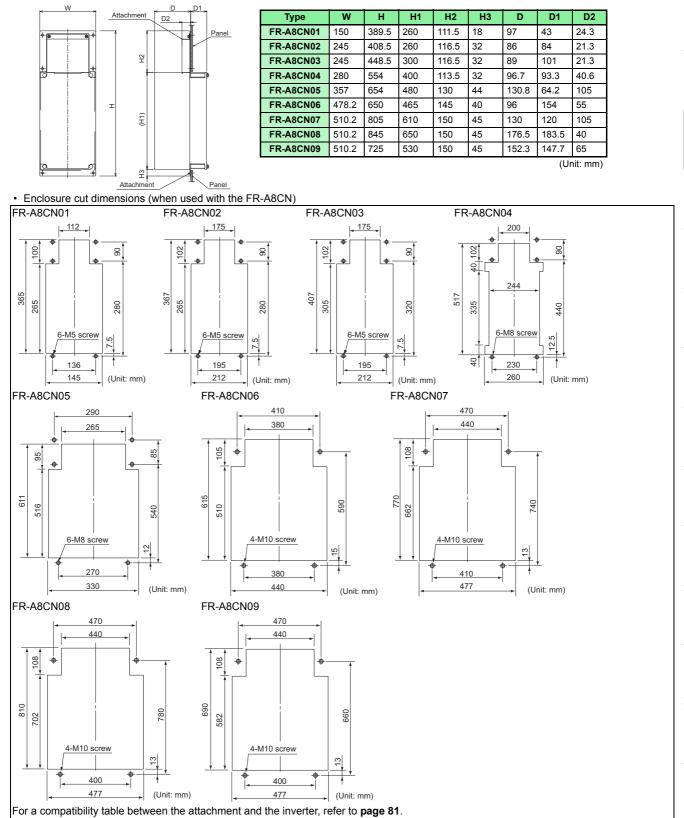
FR-F842-09620(450K), 10940(500K), 12120(560K)



*1 Do not remove the cover on the side of the converter unit.

• Operation panel (FR-DU08, FR-LU08)

×

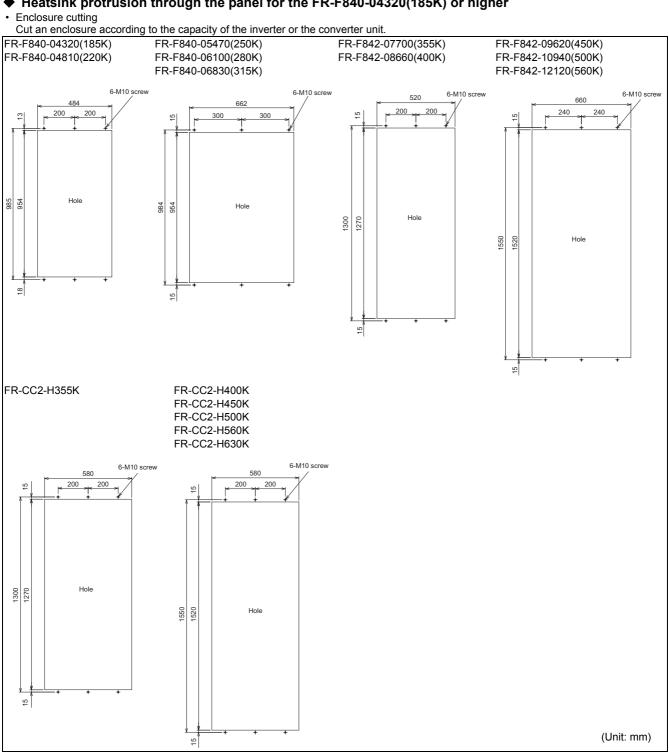

• Protruding the heatsink through the panel

When encasing the inverter or the converter unit in an enclosure, the heat generated in the enclosure can be greatly reduced by protruding the heatsink of the inverter or the converter unit. When installing the inverter in a compact enclosure, etc., this installation method is recommended. For the FR-F840-04320(185K) or higher, a heatsink can be protruded outside the enclosure without using an attachment.

When using a panel through attachment (FR-A8CN)

For the FR-F820-00105(2.2K) to FR-F820-04750(110K) and FR-F840-00023(0.75K) to FR-F840-03610(160K), a heatsink can be protruded outside the enclosure using a panel through attachment (FR-A8CN). Refer to the instruction manual of the panel through attachment (FR-A8CN) for details.

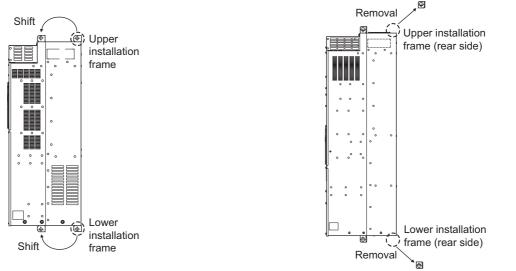
• Drawing after attachment installation (when used with the FR-A8CN)



ope

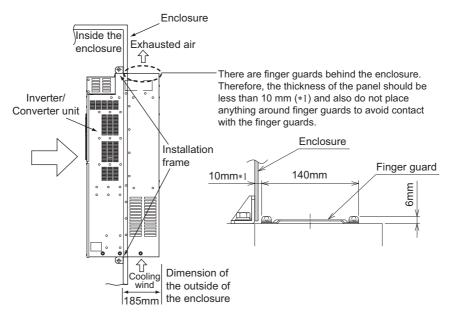
LVS/Cables

• Heatsink protrusion through the panel for the FR-F840-04320(185K) or higher


Х

Shift and removal of a rear side installation frame
 For the ED E040 04220(4051(1))
 ED E040 00220(041)

For the FR-F840-04320(185K) to FR-F840-06830(315K)


One installation frame is attached to each of the upper and lower parts of the inverter. Change the position of the rear side installation frame on the upper and lower sides of the inverter to the front side as shown below. When changing the installation frames, make sure that the installation orientation is correct.

For the FR-F842-07700(355K) to FR-F842-12120(560K), FR-CC2-H355K to FR-CC2-H630K

Two installation frames are attached to each of the upper and lower parts of the inverter or the converter unit. Remove the rear side installation frame on the upper and lower sides of the inverter or the converter unit as shown below.

• Installation of the inverter or the converter unit

Push the inverter heatsink portion outside the enclosure and fix the enclosure and the inverter or the converter unit with upper and lower installation frame.

• NOTE

Having a cooling fan, the cooling section which comes out of the enclosure cannot be used in the environment of water drops, oil, mist, dust, etc.

- Be careful not to drop screws, dust etc. into the inverter or the converter unit and the cooling fan section.
- The FR-A7CN panel through attachment cannot be installed on the FR-F800 series.

LVS/Cables

Motors

Standard models

For the FR-F820-03160(75K) or higher, the FR-F840-01800(75K) or higher, always connect a DC reactor (FR-HEL), which is available as an option. (To *1 select a DC reactor, refer to page **18, page 107**, and select one according to the applicable motor capacity.) When a DC reactor is connected to the FR-F820-02330(55K) or lower or the FR-F840-01160(55K) or lower, if a jumper is installed across the terminals P1 and P/+, remove the jumper before installing the DC reactor.

- *2
- When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21. The function of these terminals can be changed with the input terminal assignment (**Pr.178 to Pr.189**). Terminal JOG is also used as the pulse train input terminal. Use **Pr.291** to choose JOG or pulse. *3
- Terminal input specifications can be changed by analog input specification switchover (**Pr.73**, **Pr.267**). To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (**Pr.561**) It is recommended to use 2 W 1 k Ω when the frequency setting signal is changed frequently. *5 *6
- Do not use terminals PR and PX. The jumper may or may not be attached depending on the inverter. (Refer to the Instruction Manual (Startup).) Do not connect the DC power supply (under DC feeding mode) to terminal P3. The function of these terminals can be changed with the output terminal assignment (**Pr.195, Pr.196**). *7
- *8
- *9
- *10 The function of these terminals can be changed with the output terminal assignment (Pr.190 to Pr.194)
- The terminal F/C (FM) can be used to output pulse trains as open collector output by setting Pr.291 *11
- Not required when calibrating the scale with the operation panel. *12
- *13 No function is assigned in the initial status. Assign the function using Pr.186 CS terminal function selection.

PLC Functior

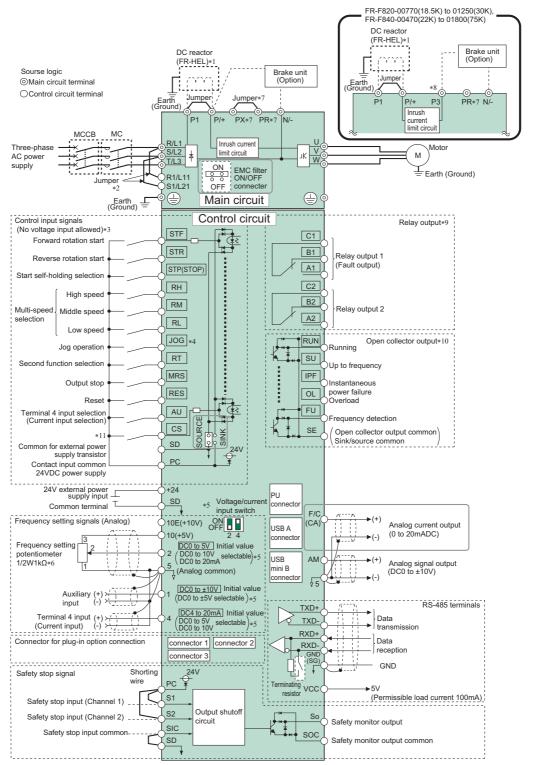
Exam

Terminal Specs

Functions Protective

LVS/Cables

Preca

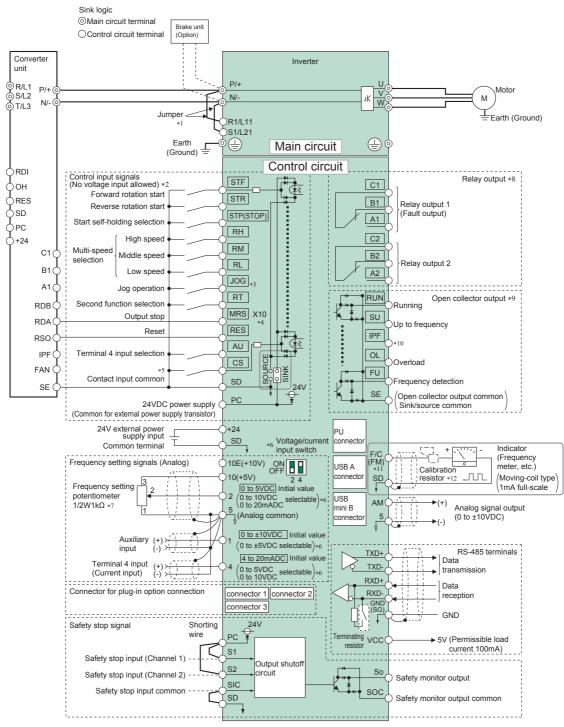

Motors

Con

Diagrams

Con

CA type



For the FR-F820-03160(75K) or higher, the FR-F840-01800(75K) or higher, always connect a DC reactor (FR-HEL), which is available as an option. (To *1 select a DC reactor, refer to page 18, page 107, and select one according to the applicable motor capacity.) When a DC reactor is connected to the FR-F820-02330(55K) or lower or the FR-F840-01160(55K) or lower, if a jumper is installed across the terminals P1 and P/+, remove the jumper before installing the DC reactor.

- When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21. *2
- *3 The function of these terminals can be changed with the input terminal assignment (Pr.178 to Pr.189).
- *4
- Terminal JOG is also used as the pulse train input terminal. Use **Pr.291** to choose JOG or pulse. Terminal input specifications can be changed by analog input specification switchover (**Pr.73, Pr.267**). To input a voltage, set the voltage/current input *5 switch OFF. To input a current, set the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561)
- It is recommended to use 2 W 1 k Ω when the frequency setting signal is changed frequently. Do not use terminals PR and PX. The jumper may or may not be attached depending on the inverter. (Refer to the Instruction Manual (Startup).) *6 *7
- *8 Do not connect the DC power supply (under DC feeding mode) to terminal P3.
- *9
- The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). The function of these terminals can be changed with the output terminal assignment (Pr.190 to Pr.194) *10
- No function is assigned in the initial status. Assign the function using Pr.186 CS terminal function selection. *11

Separated converter type

Inverter (FM type)

*1 The terminals R1/L11 and S1/L21 are connected to the terminals P/+ and N/- with a jumper respectively. When using separate power supply for the control circuit, remove the jumpers from R1/L11 and S1/L21.

- *2 The function of these terminals can be changed with the input terminal assignment (Pr.178 to Pr.189).
- *3 Terminal JOG is also used as the pulse train input terminal. Use **Pr.291** to choose JOG or pulse.
- *4 The X10 signal (NC contact input specification) is assigned to the terminal MRS in the initial setting. Set **Pr.599** = "0" to change the input specification of the X10 signal to NO contact.
- *5 No function is assigned in the initial setting. Use **Pr.186** for function assignment.
- *5 The inflation is assigned in the initial setting. Use PT. Do for inflation assignment.
 *6 Terminal input specifications can be changed by analog input specification switch OFF. To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561)
 *7 It is recommended to use 2 W 1 k0 when the frequency setting signal is changed frequently.
- *7 It is recommended to use 2 W 1 kΩ when the frequency setting signal is changed frequently. *8 The function of these terminals can be changed with the output terminal assignment (**Pr.195, Pr.196**).
- The function of these terminals can be changed with the output terminal assignment (**Pr.195**, **Pr.195**).
 The function of these terminals can be changed with the output terminal assignment (**Pr.196**).
- *10 No function is assigned in the initial setting. Use **Pr.192** for function assignment.
- *11 The terminal F/C (FM) can be used to output pulse trains as open collector output by setting Pr.291.
- *12 Not required when calibrating the scale with the operation panel.

PLC Function

Example

Specs

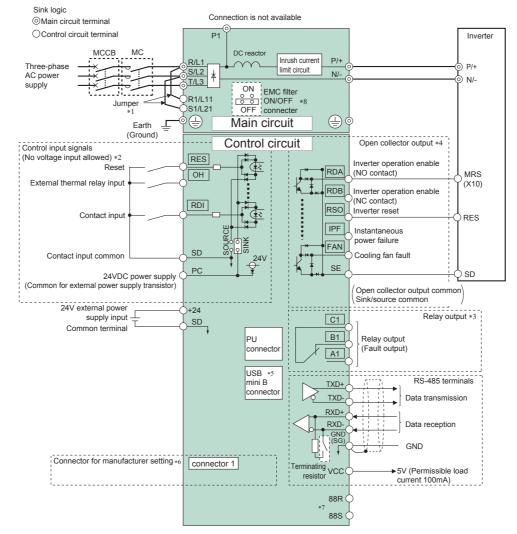
Terminal Specs

Diagrams

Steps

Functions Protective

Options


LVS/Cables

Precautions

Conr

Converter unit (FR-CC2)

• When the sink logic is selected

When using separate power supply for the control circuit, remove the jumpers from R1/L11 and S1/L21 *1

The function of these terminals can be changed with the input terminal assignment (Pr.178, Pr.187, Pr.189). The function of these terminals can be changed with the output terminal assignment (Pr.195). *2

*3

*4 The function of these terminals can be changed with the output terminal assignment (Pr.190 to Pr.194).

*5 The connector is for manufacturer setting. Do not use.

*6 Plug-in options cannot be used.

*7 For manufacturer setting. Do not use.

For the FR-CC2-H400K to H630K, two EMC filter ON/OFF connectors are provided. *8

• Standard models, and separated converter type

indicates that terminal functions can be selected from **Pr.178 to Pr.196 (I/O terminal function selection)**. Terminal names and terminal functions are those of the factory set.

Ţ	уре	Terminal Symbol	Terminal Name	Description	
		R/L1, S/L2, T/L3 +1	AC power input	Connect to the commercial power supply.	
	ŧ	U, V, W R1/L11, S1/L21	Inverter output Power supply for control circuit	Connect a three-phase squirrel-cage motor or PM motor. Connected to the AC power supply terminals R/L1 and S/L2. To retain alarm or external power to this terminal.	
	Main circuit	P/+, N/- P3, N/- *1 *2	Brake unit connection	Connect the brake unit (FR-BU2), power regeneration common converter (FR converter (MT-RC), high power factor converter (FR-HC2), or DC power supply Do not connect the DC power supply between terminals P3 and N/ Use termin Connect the separated converter type to the terminals P/+ and N/- of the conv	ly (under DC feeding mode). hals P/+ and N/- for DC feeding. /erter unit.
	Σ	P/+, P1 +1	DC reactor connection	Remove the jumper across terminals P/+-P1 and connect a DC reactor. For th higher, the FR-F840-01800(75K) or higher, always connect a DC reactor, which	ch is available as an option.
		PR, PX *1		PR. The terminal PX is equipped in the FR-F820-00490(11K) or lower and the in the FR-F820-01250(30K) or lower and the FR-F840-01800(75K) or lower.	FR-F840-00250(11K) or lower.
			Earth (Ground)	For earthing (grounding) the inverter chassis. Must be earthed (grounded).	
		STF	Forward rotation start	Turn ON the STF signal to start forward rotation and turn it OFF to stop.	When the STF and STR signals are turned ON simultaneously,
		STR	Reverse rotation start	Turn ON the STR signal to start reverse rotation and turn it OFF to stop.	the stop command is given.
		STP (STOP)	Start self-holding selection	Turn ON the STOP signal to self-hold the start signal.	
		RH, RM, RL	Multi-speed selection	Multi-speed can be selected according to the combination of RH, RM and RL	signals.
		JOG	Jog mode selection	Turn ON the JOG signal to select Jog operation (initial setting) and turn ON th start Jog operation.	e start signal (STF or STR) to
		308	Pulse train input	JOG terminal can be used as pulse train input terminal. To use as pulse train in needs to be changed. (maximum input pulse: 100k pulses/s)	put terminal, the Pr.291 setting
		RT	Second function selection	Turn ON the RT signal to select second function selection When the second function such as "Second torque boost" and "Second V/F (ba ON the RT signal selects these functions.	ase frequency)" are set, turning
	put	MRS	Output stop	Turn ON the MRS signal (2 ms or more) to stop the inverter output. Use to shut OFF the inverter output when stopping the motor by electromagne	etic brake.
	Contact input	MRS (X10)+7	Output stop (Inverter operation enable)	Connect to the terminal RDA of the converter unit (FR-CC2). When the RDA si output is shut off. The X10 signal (NC contact) is assigned to the terminal MR Pr.599 to change the specification to NO contact.	Š in the initial setting. Use
	ŝ	RES	Reset	Used to reset alarm output provided when protective circuit is activated. Turn than 0.1 s, then turn it OFF. Recover about 1 s after reset is cancelled.	ON the RES signal for more
		AU	Terminal 4 input selection	Terminal 4 is made valid only when the AU signal is turned ON. Turning the AU signal ON makes terminal 2 invalid.	
		CS	No function	Use Pr.186 CS terminal function selection for function assignment.	
			Contact input common (sink)*3	Common terminal for the contact input terminal (sink logic) and terminal FM.	
al		SD	External transistor common (source)+4	Connect this terminal to the power supply common terminal of a transistor out device, such as a programmable controller, in the source logic to avoid malfur	
: sign			24 VDC power supply common	Common output terminal for the 24 VDC 0.1 A power supply (terminal PC). Isolated from terminals 5 and SE.	
ndu			External transistor common (sink)+3	Connect this terminal to the power supply common terminal of a transistor out device, such as a programmable controller, in the sink logic to avoid malfuncti	put (open collector output) on by undesirable currents.
cuit/i		PC	Contact input common (source)+4	Common terminal for contact input terminal (source logic).	
l cir			24 VDC power supply	Can be used as a 24 VDC 0.1 A power supply.	
Control circuit/input signal		10E	Frequency setting power supply	When connecting a frequency setting potentiometer at an initial status, connect it to terminal 10. Change the input specifications of terminal 2 when connecting it to terminal	10 VDC, permissible load current 10 mA 5 VDC, permissible load
ľ		10		10E. Inputting 0 to 5 VDC (or 0 to 10 V, 4 to 20 mA) provides the maximum output	current 10 mA
	setting	2	Frequency setting (voltage)	frequency at 5 V (10 V, 20 mA) and makes input and output proportional. Use Pr.73 to switch from among input 0 to 5 VDC (initial setting), 0 to 10 VDC, and 4 to 20 mA. Set the voltage/current input switch in the ON position to select current input (0 to 20 mA).	Voltage input: Input resistance 10 k $\Omega \pm$ 1 k Ω Maximum permissible voltage 20 VDC
	Frequency setting	4	Frequency setting (current)	Inputting 4 to 20 mADC (or 0 to 5 V, 0 to 10 V) provides the maximum output frequency at 20 mA and makes input and output proportional. This input signal is valid only when the AU signal is on (terminal 2 input is invalid). Use Pr.267 to switch from among input 4 to 20 mA (initial setting), 0 to 5 VDC, and 0 to 10 VDC. Set the voltage/current input switch in the OFF position to select voltage input (0 to 5 V/0 to 10 V). Use Pr.858 to switch terminal functions.	Current input: Input resistance 245 $\Omega \pm 5 \Omega$ Maximum permissible current 30 mA
		1	Frequency setting auxiliary	Inputting 0 to \pm 5 VDC or 0 to \pm 10 VDC adds this signal to terminal 2 or 4 frequency setting signal. Use Pr.73 to switch between input 0 to \pm 5 VDC and 0 to \pm 10 VDC (initial setting) input.	Input resistance 10 k Ω ±1 k Ω Maximum permissible voltage ±20 VDC
		5	Frequency setting common	Common terminal for frequency setting signal (terminal 2, 1 or 4) and analog or earth (ground).	output terminal AM, CA. Do not
	Thermistor	10 2	PTC thermistor input	For receiving PTC thermistor outputs. When PTC thermistor is valid (Pr.561 \neq "9999"), the terminal 2 is not available for frequency setting.	Applicable PTC thermistor specification Overheat detection resistance:500 Ω to 30 k Ω (Set by Pr.561)
	External power supply input	+24	24 V external power supply input	For connecting a 24 V external power supply. If a 24 V external power supply is connected, power is supplied to the control circuit while the main power circuit is OFF.	Input voltage 23 to 25.5 VDC Input current 1.4 A or less

Туре		rminal ymbol	Terminal Name	Desc	ription	
Relay	_	1, B1, C1	Relay output 1 (alarm output)	1 changeover contact output indicates that the inverter activated and the output stopped. Alarm: discontinuity across A-C), Normal: continuity across B-C (discontin	across B-C (continuity	Contact capacity 230 VAC 0.3 A (power factor =0.4) 30 VDC
Re	A	2, B2, C2	Relay output 2	1 changeover contact output		0.3 A
	F	RUN	Inverter running	Switched low when the inverter output frequency is eq starting frequency (initial value 0.5 Hz). Switched high injection brake operation.		
		SU	Up to frequency	Switched low when the output frequency reaches within the range of ±10% (initial value) of the set frequency. Switched high during acceleration/ deceleration and at a stop.		Permissible load 24 VDC (maximum 27 VDC) 0.1 A
open collector		OL	Overload alarm	Switched low when stall prevention is activated by the stall prevention function. Switched high when stall prevention is cancelled.		(The voltage drop is 2.8 V at maximum while the signal is ON.)
en co		IPF	Instantaneous power failure	Switched low when an instantaneous power failure and under voltage protections are activated.	Alarm code (4 bits) output	LOW is when the open collector output transistor is ON (conducted).HIGH is when
dino dino	I	PF*7	Open collector output	No function is assigned in the initial setting. The function can be assigned setting Pr.192 .		the transistor is OFF (not conducted).
control circuivouput signal Open colle		FU	Frequency detection	Switched low when the inverter output frequency is equal to or higher than the preset detected frequency and high when less than the preset detected frequency.		
		SE	Open collector output common	Common terminal for terminals RUN, SU, OL, IPF, FL		
Pulse	F	FM +5	For meter		Output item: output free permissible load currer For full scale1440 pulse	nt 2 mÁ, es/s
Pu			NPN open collector output	Select one e.g. output frequency from monitor items. (The signal is not output during an inverter reset.) The output signal is proportional to the magnitude of	50kpulses/s)	291. (maximum output pulse:
Analog		АМ	Analog voltage output	the corresponding monitoring item. The output signal is proportional to the magnitude of the corresponding monitoring item. Use Pr.55 , Pr.56 , and Pr.866 to set full scales for the monitored output frequency, output current, and torque.	Output item: output free output signal 0 to ±10 V permissible load currer or more), resolution 8 bits	
A	0	CA +6	Analog current output		Output item: output free Load impedance 200 C Output signal 0 to 20 m	2 to 450 Ω
		_	PU connector	With the PU connector, communication can be made • Conforming standard: EIA-485(RS-485) • Transmission format: Multi-drop link		nnection only)
c		TXD +, TXD	Inverter transmission terminal	With the RS-485 terminals, communication can be ma		
ommunication	RS-485	RXD +, RXD -	Inverter reception terminal	Conforming standard: EIA-485(RS-485) Transmission format: Multi-drop link	Communication spee Overall extension: 50	
Sol		GND (SG)	Earth (Ground)	· · · · · · · · · · · · · · · · · · ·		1
			USB A connector	A connector (receptacle). A USB memory device enables parameter copies and	the trace function.	Interface: Conforms to USB1.1 (USB2.0 full-speed
		_	USB B connector	Mini B connector (receptacle). Connected to a personal computer via USB to enable operations of the inverter by FR Configurator2.	U ¹ U ¹	compatible). Transmission speed: 12 Mbps
		S1	Safety stop input (Channel 1)	The terminals S1 and S2 are used for the safety stop safety relay module. The terminals S1 and S2 are use (dual channel). Inverter output is shutoff by shortening/opening betwe SIC, or between S2 and SIC.	ed at the same time	Input resistance 4.7 kΩ Input current 4 to 6 mADC
Safety stop signal		S2	Safety stop input (Channel 2)	In the initial status, terminals S1 and S2 are shorted w shorting wires. The terminal SIC is shorted with the te shorting wires and connect the safety relay module w stop function.	rminal SD. Remove the	(with 24 VDC input)
stop		SIC	Safety stop input terminal common	Common terminal for terminals S1 and S2.		_
Safety		SO	Safety monitor output (open collector output)	Indicates the safety stop input signal status. Switched to LOW when the status is other than the inf failure. Switched to HIGH during the internal safety cir (LOW is when the open collector output transistor is O when the transistor is OFF (not conducted).) Refer to the Safety stop function instruction manual (B the signal is switched to HIGH while both terminals S ⁻	cuit failure status. N (conducted). HIGH is CN-A23228-001) when	Permissible load 24 VDC (maximum 27 VDC) 0.1 A (The voltage drop is 3.4 V at maximum while the signal is ON.)
		soc	Safety stop input terminal common	Common terminal for terminal SO.		_

Terminals R/L1, S/L2, T/L3, PR, P3, P1, and PX are not provided in the separated converter type. The terminal P3 is equipped in the FR-F820-00770(18.5K) to 01250(30K) and the FR-F840-00470(22K) to 01800(75K). Sink logic is initially set for the FM-type inverter. Source logic is initially set for the CA-type inverter. Terminal FM is provided in the FM-type inverter. Terminal CA is provided in the CA-type inverter. Function and name of the separated converter type.

*2 *3 *4 *5 *6 *7

Х

Warranty Inquiry

×

indicates that terminal functions can be selected from **Pr.178**, **Pr.187**, **Pr.189** to **Pr.195** (I/O terminal function selection). Terminal names and terminal functions are those of the factory set.

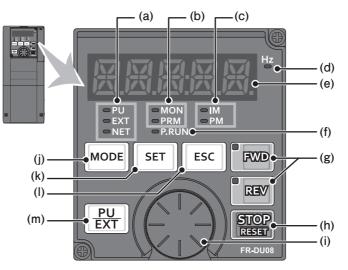
_	уре		Symbol	tunctions are those of the Terminal Name	Description	
-	ype		L2, T/L3	AC power input	Connect these terminals to the commercial power supply.	
	Main circuit		,S1/L21	Power supply for the control circuit	Connected to the AC power supply terminals R/L1 and S/L2. To retain to output, remove the jumpers across terminals R/L1 and R1/L11 and across upply external power to these terminals.	
	ain	P/+	N/-	Inverter connection	Connect to terminals P/+ and N/- of the inverter.	
	Σ		Ð	Earth (ground)	For earthing (grounding) the converter unit chassis. This must be earthe	ed (grounded).
		RI	ES	Reset	Use this signal to reset a fault output provided when a protective function the RES signal for 0.1 s or longer, then turn it OFF. In the initial setting, reset is always enabled. By setting Pr.75 , reset can fault occurrence of the converter unit. The inverter recovers about 1 s a	be set enabled only at fter the reset is released.
		o	н	External thermal relay input	The external thermal relay input (OH) signal is used when using an external protector built into the motor to protect the motor from overheat When the thermal relay is activated, the inverter trips by the external the (E.OHT).	ing.
		R	DI	Contact input	The function can be assigned by setting Pr.178 .	
gnal	t input			Contact input common (sink) (Initial setting)	Common terminal for contact input terminal (sink logic).	
Control circuit/input signal	Contact input	s	D	External transistor common (source)	Connect this terminal to the power supply common terminal of a transist output) device, such as a programmable controller, in the source logic to undesirable current.	o avoid malfunction by
ircuit/				24 VDC power supply common	Common terminal for the 24 VDC power supply (terminal PC, terminal - Isolated from terminal SE.	+24)
ontrol c				External transistor common (sink) (Initial setting)	Connect this terminal to the power supply common terminal of a transist output) device, such as a programmable controller, in the source logic to undesirable current.	
Ó		Р	с	Contact input common (source)	Common terminal for contact input terminal (source logic).	
				24 VDC power supply common	Can be used as a 24 VDC 0.1 A power supply.	
	External power supply input	+2	24	24 V external power supply input	For connecting a 24 V external power supply. If a 24 V external power supply is connected, power is supplied to the control circuit while the main power circuit is OFF.	Input voltage 23 to 25.5 VDC Input current 1.4 A or less
	Relay	A1, B	1, C1	Relay output 1 (fault output)	1 changeover contact output that indicates that the protective function of the converter unit has been activated and the outputs are stopped. Fault: discontinuity across B and C (continuity across A and C), Normal: continuity across Band C (discontinuity across A and C)	Contact capacity 230 VAC 0.3 A (power factor = 0.4) 30 VDC 0.3 A
al		88R,	88S	For manufacturer setting. D	o not use.	
lit/output signal		RI	DA	Inverter operation enable (NO contact)	Switched to LOW when the converter unit operation is ready. Assign the signal to the terminal MRS (X10) of the inverter. The inverter can be started when the RDA status is LOW.	Permissible load 24 VDC (maximum 27 VDC) 0.1 A
cuit/out	ctor	RI	ЭB	Inverter operation enable (NC contact)	Switched to LOW when a converter unit fault occurs or the converter is reset. The inverter can be started when the RDB status is HIGH.	(The voltage drop is 2.8 V at maximum while the signal is ON.)
Control circu	Open collector	R	50	Inverter reset	Switched to LOW when the converter is reset (RES-ON). Assign the signal to the terminal RES of the inverter. The inverter is reset when it is connected with the RSO status LOW.	LOW is when the open collector output transistor is ON (conducted).
ŭ	QF	IF	۶F	Instantaneous power failure	Switched to LOW when an instantaneous power failure is detected.	HIGH is when the transistor is OFF (not
		F/	NN	Cooling fan fault	Switched to LOW when a cooling fan fault occurs.	conducted).
		s	E	Open collector output common	Common terminal for terminals RDA, RDB, RSO, IPF, FAN	
	cation	-	-	PU connector	With the PU connector, communication can be made through RS-485. (basis only) • Conforming standard: EIA-485 (RS-485) • Transmission format: Multidrop link • Communication speed: 4800 to 115200 bps • Wiring length: 500 m	For connection on a 1:1
	Communication		TXD+ TXD-	Converter unit transmission terminal	The RS-485 terminals enable the communication by RS-485. • Conforming standard: EIA-485 (RS-485)	
	ő	RS-485 terminals	RXD+ RXD-	Converter unit reception terminal	Transmission format: Multidrop link Communication speed: 300 to 115200 bps	
			GND (SG)	Earthing (grounding)	• Overall length: 500 m	

Features

PLC Function FR Configurator2

> Connection Example

> > Standard

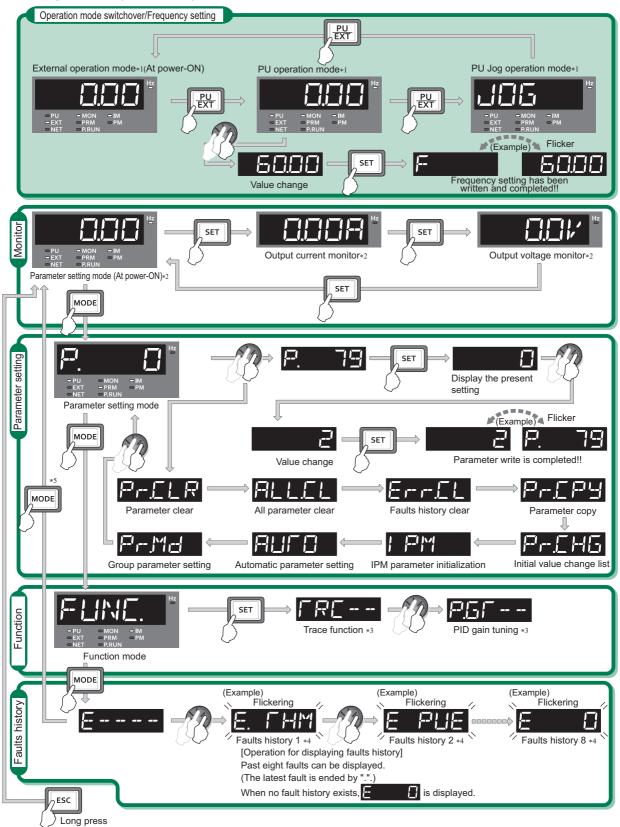

Outline Dimensions

Specs

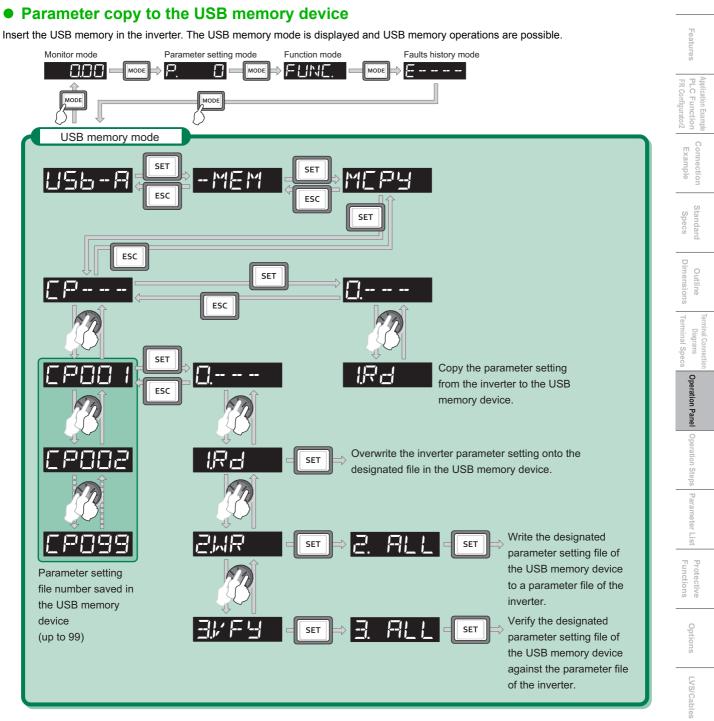
Operation Panel (FR-DU08)

×

• Components of the operation panel


The operation panel of the inverter can be used for the converter unit.

No.	Component	Name	Description
(a)	© PU © EXT © NET	Operation mode indicator *1	PU: ON to indicate the PU operation mode. EXT: ON to indicate the External operation mode. (ON at power-ON in the initial setting.) NET: ON to indicate the Network operation mode. PU and EXT: ON to indicate the External/PU combined operation mode 1 or 2.
(b)	⊂ MON ⊂ PRM	Operation panel status indicator	MON: ON to indicate the monitoring mode. Quickly flickers twice intermittently while the protective function is activated. PRM: ON to indicate the parameter setting mode.
(c)	□ IM □ PM	Control motor indicator *1	IM: ON to indicate the induction motor control. PM: ON to indicate the PM motor control. The indicator flickers when test operation is selected.
(d)	Hz	Frequency unit indicator *1	ON to indicate frequency. (Flickers when the set frequency is displayed in the monitor.)
(e)	XXXXXX	Monitor (5-digit LED)	Shows the frequency, parameter number, etc. (Using Pr.52, Pr.774 to Pr.776 , the monitored item can be changed.)
(f)	⊂ P.RUN	PLC function indicator *1	ON to indicate that the PLC function is operating.
(g)	FWD	FWD key, REV key *1	 FWD key: Starts forward rotation. The LED is lit during forward operation. REV key: Starts reverse rotation. The LED is lit during reverse operation. The LED flickers under the following conditions. When the frequency command is not given even if the forward/reverse command is given. When the frequency command is the starting frequency or lower. When the MRS signal is being input.
(h)	STOP	STOP/RESET key	Stops the operation commands. Resets the inverter when the protection function is activated.
(i)		Setting dial	 The setting dial of the Mitsubishi inverters. The setting dial is used to change the frequency and parameter settings. Press the setting dial to perform the following operations: To display a set frequency in the monitoring mode (the setting can be changed using Pr.992. To display the present setting during calibration To display a fault history number in the faults history mode
(j)	MODE	MODE key	Switches to different modes. Switches to the easy setting mode by pressing simultaneously with <u>PU</u> . Holding this key for 2 seconds locks the operation. The key lock is invalid when Pr.161= "0 (initial setting)".
(k)	SET	SET key	Enters each setting. When the initial setting is set If pressed during operation, the monitored item changes. Output frequency → Output current → Output voltage (Using Pr.52, Pr.774 to Pr.776, the monitored item can be changed.)
(I)	ESC	ESC key	Goes back to the previous display. Holding this key for a longer time changes the mode back to the monitor mode.
(m)		PU/EXT key *1	Switches between the PU operation mode, the PUJOG operation mode, and the External operation mode. Switches to the easy setting mode by pressing simultaneously with MODE.


*1 Not available for the converter unit.

Basic operation(FR-DU08)

X

- *1 For the details of operation modes, refer to page 45.
- *2 Monitored items can be changed.
- For the details, refer to the Instruction Manual (Detailed). *3
- While a fault is displayed, the display shifts as follows by pressing set: Output frequency at the fault \rightarrow Output current \rightarrow Output voltage \rightarrow Energization *4 → Year → Month → Date → Time. (After Time, it goes back to a fault display.) Pressing the setting dial shows the fault history number. time
- *5 The USB memory mode will appear if a USB memory device is connected. (Refer to page 42.)
- *6 Not available for the converter unit.

Parameter copy to the USB memory device

Warranty Inquiry

Precautions

Motors

Compatibility

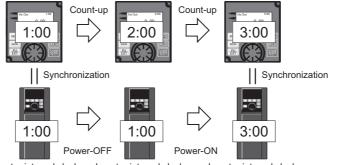
• Group parameter display

×

Parameter numbers can be changed to grouped parameter numbers. Parameters are grouped by their functions. The related parameters can be set easily.

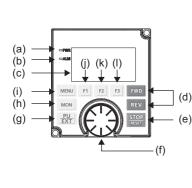
(1) Changing to the grouped parameter numbers

Pr.MD setting value	Description
0	No change
1	Parameter display by parameter number
2	Parameter display by function group


	Operation
1.	Screen at power-ON
	The monitor display appears.
-	Parameter setting mode
2.	Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
	Selecting the parameter number
3.	Turn 🕄 until Pr-Md (parameter display method) appears.
	Press SET . "[]" (initial value) will appear.
-	Changing to the group parameter display
4.	Turn 🕄 to change the set value to ", (group parameter display). Press SET to select the group parameter setting. ", "
	and " 🖓 , 🎢 📇 " flicker alternately after the setting is completed.
(0)	Observing a new stars a stilling in the survey new stars display.
(2)	Changing parameter settings in the group parameter display
Б	Changing example Change the P.H400(Pr.1) Maximum frequency .
Ľ	
	Operation
	Screen at power-ON
1.	The monitor display appears.
	Changing the operation mode
2.	
	Press PU to choose the PU operation mode. [PU] indicator is lit.
	Parameter setting mode
3.	
	Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
	Parameter group selection
4.	Press ESC several times until PADappears.
4.	
	(No need to press ESC if the previously read parameter is one of P_{r} , $L R$ to P_{r} , M_{r} .) Skip this operation and
	proceed to step 5)
	Parameter group selection
5.	
0.	Turn 😯 until 🏳 (protective function parameter 4) appears. Press SET to display 🏳 and make the
	group parameters of the protective function parameter 4 selectable.
	Parameter selection
6.	Turn 😧 until PHHD (P.H400 Maximum frequency) appears. Press SET to read the present set value.
	"
	Changing the setting value
7.	Turn 🕄 to change the set value to "🗧 🗍 🎧 🖉 ". Press 🛛 SET to enter the setting. "듬 🎧 🗍 🖓 " and "
	alternately after the setting is completed.

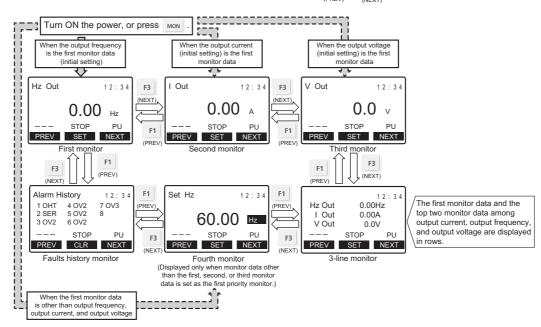
Details on the LCD operation panel (FR-LU08)

- The FR-LU08 is an optional operation panel adopting an LCD panel capable of displaying text and menus.
- Replacement with the operation panel (FR-DU08) and installation on the enclosure surface using a connection cable (FR-CB2) are
 possible. (To connect the FR-LU08, an optional operation panel connection connector (FR-ADP) is required.)
- Parameter settings for up to three inverters can be saved.
 When the FR-LU08 is connected to the inverter, the internal clock of the inverter can be synchronized with the clock of FRLU08. (Real time clock function)


With a battery (CR1216), the FR-LU08 time count continues even if the main power of the inverter is turned OFF. (The time count of the inverter internal clock does not continue when the inverter power is turned OFF.)

Inverter internal clock Inverter internal clock Inverter internal clock

Appearance and parts name

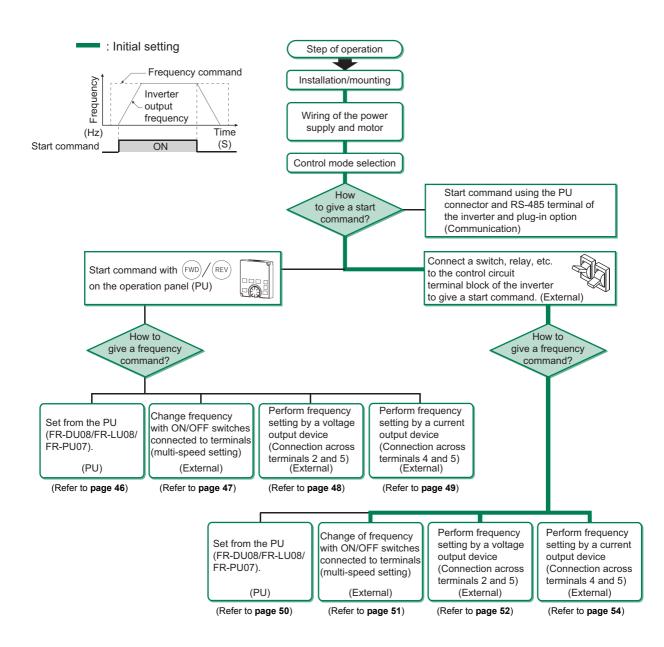

×

Symbol	Name	Description
а	Power lamp	ON when the power is turned ON.
b	Alarm lamp	ON when an inverter alarm occurs.
С	Monitor	Shows the frequency, parameter number, etc. (Using Pr.52, Pr.774 to Pr.776 , the monitored item can be changed.)
d	FWD key, REV key	FWD key: Starts the forward operation. REV key: Starts the reverse operation.
e	STOP/RESET key	Used to stop operation commands. Used to reset the inverter when the protective function is activated.
f	Setting dial	The setting dial is used to change the frequency and parameter settings. Pressing the dial shows details of the faults history mode.
g	PU/EXT key	Switches between the PU mode, the PUJOG mode, and the External operation mode.
h	MON key	Shows the first monitored item.
i	MENU key	Displays the quick menu. Pressing the key while the quick menu is displayed displays the function menu.
j	Software key (F1)	
k	Software key (F2)	Select a guidance displayed on the monitor.
I	Software key (F3)	

Switching the main monitor data

When **Pr.52 Operation panel main monitor selection** is set to "0", by pressing [F1] or [I] 6 types of monitor data are displayed in order.

Features PLC Function FR Configurator2


Connection Example

upe ope

Protective Functions

Options

LVS/Cables

Features

PLC Function FR Configurator2

> Connectior Example

> Standard Specs

> Outline Dimensions

Diagrams Terminal Specs

Operation Panel

Operation Steps

neter List

Protective Functions

Options

LVS/Cables

Precautions

Motors

Compatibility

Warranty Inquiry

• Basic operation procedure (PU operation)

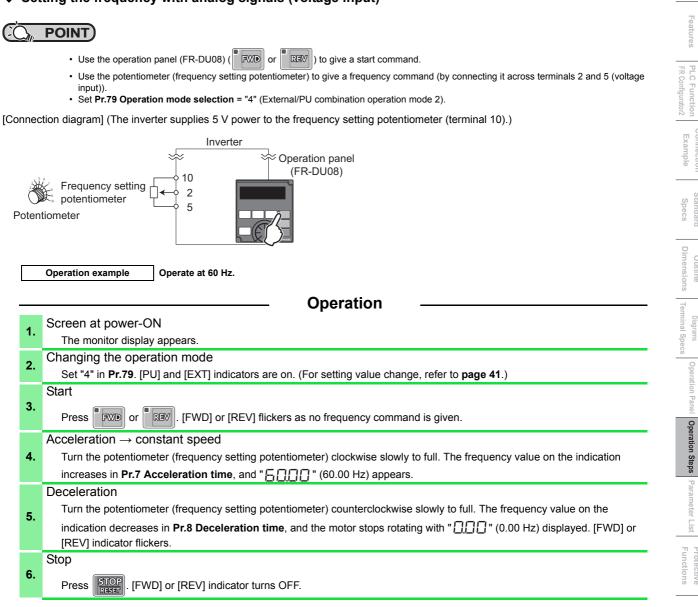
×

	POINT)
	Where is the frequency command source?
	- The frequency set in the frequency setting mode of the operation panel \rightarrow Refer to page 46 . - The setting dial used as the potentiometer \rightarrow Refer to the Instruction Manual (Detailed) .
	- The Setting data used as the potentionnel \rightarrow refer to the instruction manual (Detailed). - The ON/OFF switches connected to terminals \rightarrow Refer to page 47.
	- Voltage input signals \rightarrow Refer to page 48 .
	 Current input signals → Refer to page 49.
Op	erating at a set frequency (example: operating at 30 Hz)
\bigcirc	POINT
	Use the operation panel (FR-DU08) to give a start command and a frequency command. (PU operation)
	Operation panel
	(FR-DU08)
	Operation example Operate at 30 Hz.
	Operation
	Screen at power-ON
1.	The monitor display appears.
	Changing the operation mode
2.	
	Press PU to choose the PU operation mode. [PU] indicator is on.
	Setting the frequency
	Turn 🞲 until the target frequency, "] [] [] [] " (30.00 Hz), appears. The frequency flickers for about 5 s.
	While the value is flickering, press SET to enter the frequency. "F " and " - []]] " flicker alternately. After about 3 s of
3.	
	flickering, the indication goes back to "[],[] [] " (monitor display).
	(If set is not pressed, the indication of the value goes back to "
	case, turn () again and set the frequency.)
	Start \rightarrow acceleration \rightarrow constant speed
4.	Press FWD or REV to start running. The frequency value on the indication increases in Pr.7 Acceleration time , and
	" ∃∏∏∏ " (30.00 Hz) appears.
	(To change the set frequency, perform the operation in above step 3. The previously set frequency appears.)
	Deceleration \rightarrow stop
5.	Press STOP to stop. The frequency value on the indication decreases in Pr.8 Deceleration time , and the motor stops
	rotating with "

• NOTE

- To display the set frequency under PU operation mode or External/PU combined operation mode 1 (**Pr.79** = "3"), press (Refer to **the Instruction Manual (Detailed)**.)
- (can also be used like a potentiometer to perform operation. (Refer to the Instruction Manual (Detailed).)

<u>≁</u> ∥	POINT
	• Use the operation panel (FR-DU08) (FWD or REV) to give a start command.
	 Turn ON the RH, RM, or RL signal to give a frequency command. (multi-speed setting) Set Pr.79 Operation mode selection = "4" (External/PU combination operation mode 2).
nnec	ction diagram]
	High speed Middle speed Switch High speed Switch High speed RH RL SD High speed RH SD High speed RH RL SD High speed RH RL SD RH RL RL SD RH RL SD R SD RH RL SD RH RL SD RH RL SD R SD R SD RH RL SD R SD R SD RH RL SD R SD R SD R SD R SD R SD R SD R S
	Operation example Operate at a low-speed (10 Hz).
	Uperation
	Screen at power-ON
1.	Screen at power-ON The monitor display appears.
	Screen at power-ON
1. 2.	Screen at power-ON The monitor display appears. Changing the operation mode Set "4" in Pr.79 . [PU] and [EXT] indicators are on. (For setting value change, refer to page 41 .)
	Screen at power-ON The monitor display appears. Changing the operation mode Set "4" in Pr.79 . [PU] and [EXT] indicators are on. (For setting value change, refer to page 41 .) Setting the frequency
2.	Screen at power-ON The monitor display appears. Changing the operation mode Set "4" in Pr.79 . [PU] and [EXT] indicators are on. (For setting value change, refer to page 41 .) Setting the frequency Turn ON the low-speed switch (RL).
2.	Screen at power-ON The monitor display appears. Changing the operation mode Set "4" in Pr.79 . [PU] and [EXT] indicators are on. (For setting value change, refer to page 41 .) Setting the frequency
2.	Screen at power-ON The monitor display appears. Changing the operation mode Set "4" in Pr.79 . [PU] and [EXT] indicators are on. (For setting value change, refer to page 41 .) Setting the frequency Turn ON the low-speed switch (RL).
2. 3.	Screen at power-ON The monitor display appears. Changing the operation mode Set "4" in Pr.79. [PU] and [EXT] indicators are on. (For setting value change, refer to page 41.) Setting the frequency Turn ON the low-speed switch (RL). Start → acceleration → constant speed Press Image: Press
2. 3.	Screen at power-ON The monitor display appears. Changing the operation mode Set "4" in Pr.79 . [PU] and [EXT] indicators are on. (For setting value change, refer to page 41 .) Setting the frequency Turn ON the low-speed switch (RL). Start → acceleration → constant speed
2. 3.	Screen at power-ON The monitor display appears. Changing the operation mode Set "4" in Pr.79. [PU] and [EXT] indicators are on. (For setting value change, refer to page 41.) Setting the frequency Turn ON the low-speed switch (RL). Start → acceleration → constant speed Press refer to page in Pr.7 Acceleration time, and " I[],]] " (10.00 Hz) appears.



• NOTE

×

- The terminal RH is initially set to 60 Hz for the FM type inverter, and to 50 Hz for the CA type inverter. The terminal RM is set to 30 Hz, and the RL is set to 10 Hz. (To change, set Pr.4, Pr.5, and Pr.6.)
 In the initial setting, when two or more of multi-speed settings are simultaneously selected, priority is given to the set frequency of the lower
- signal.
- For example, when RH and RM signals turn ON, RM signal (**Pr.5**) has a higher priority.
 Maximum of 15-speed operation can be performed.

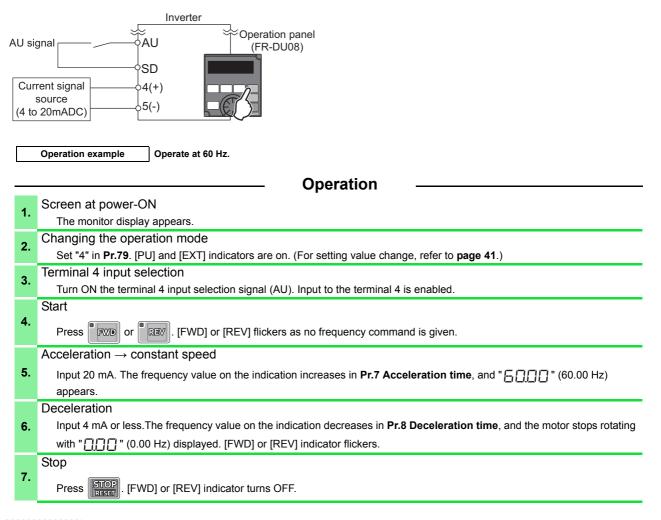
Setting the frequency with analog signals (voltage input)

NOTE :

- To change the frequency (60 Hz) at the maximum voltage input (initial value 5 V), adjust Pr.125 Terminal 2 frequency setting gain frequency.
- To change the frequency (0 Hz) at the minimum voltage input (initial value 0 V), adjust the calibration parameter C2 Terminal 2 frequency setting bias frequency.

Options

LVS/Cables



- Use the operation panel (FR-DU08) (FWD or REV) to give a start command.
- Use the outputs from the current signal source (4 to 20 mA) to give a frequency command (by connecting it across terminals 4 and 5 (current input)).

- Turn ON the AU signal.
- Set Pr.79 Operation mode selection = "4" (External/PU combination operation mode 2).

[Connection diagram]

NOTE :

- Pr.184 AU terminal function selection must be set to "4" (AU signal) (initial value).
 - To change the frequency (60 Hz) at the maximum current input (initial value 20 mA), adjust Pr.126 Terminal 4 frequency setting gain frequency.
- To change the frequency (0 Hz) at the minimum current input (initial value 4 mA), adjust the calibration parameter C5 Terminal 4 frequency setting bias frequency.

Basic operation procedure (External operation)

POINT)

- · Where is the frequency command source?
 - The frequency set in the frequency setting mode of the operation panel \rightarrow Refer to page 50.
 - Switches (multi-speed setting) \rightarrow Refer to page 51.
- Voltage input signals \rightarrow Refer to **page 52**.
- Current input signals \rightarrow Refer **page 54**.

Using the frequency set by the operation panel

POINT)

• Switch ON the STF (STR) signal to give a start command.

- Use the operation panel (FR-DU08) () to give a start command.
- Set **Pr.79** = "3" (External/PU combined operation mode 1).

[Connection diagram]

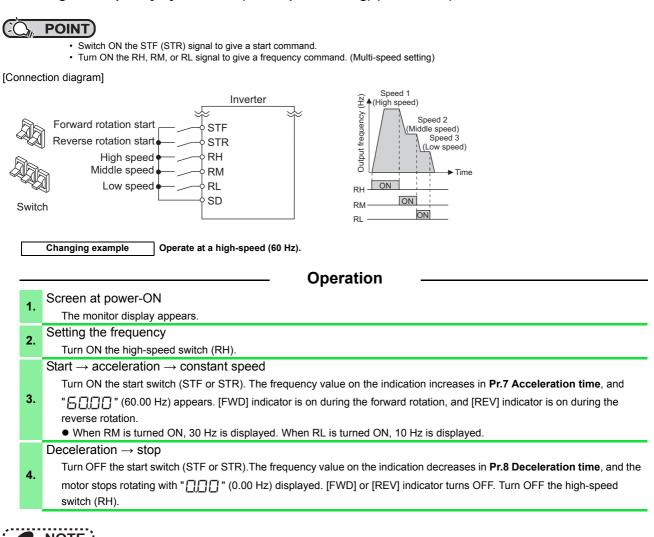
,01	mec	
ŝ	Switc	Forward rotation start Reverse rotation h
		Operation example Operate at 30 Hz.
		Operation
	1.	Changing the operation mode Set "3" in Pr.79 . [PU] and [EXT] indicators are on. (For setting value change, refer to page 41 .)
	2.	Setting the frequency Turn is not pressed, the indication of the value goes back to "[]]" (0.00 Hz) after about 5 s of flickering. In that case, turn is again and set the frequency.
	3.	Start → acceleration → constant speed Turn ON the start switch (STF or STR). The frequency value on the indication increases in Pr.7 Acceleration time , and "][][][] " (30.00 Hz) appears. [FWD] indicator is on during the forward rotation, and [REV] indicator is on during the reverse rotation. (To change the set frequency, perform the operation in above step 2. The previously set frequency appears.)
	4.	Deceleration → stop Turn OFF the start switch (STF or STR). The frequency value on the indication decreases in Pr.8 Deceleration time , and the motor stops rotating with "☐☐☐ " (0.00 Hz) displayed.
• •		

• NOTE

- · When both the forward rotation switch (STF) and the reverse rotation switch (STR) are ON, the motor cannot be started. If both are turned ON while the inverter is running, the inverter decelerates to a stop.
- Pr.178 STF terminal function selection must be set to "60" (or Pr.179 STR terminal function selection must be set to "61"). (All are initial values.)
- Setting Pr.79 Operation mode selection="3" also enables multi-speed operation.
- If stopped using STOP on the operation panel (FR-DU08) during the External operation, the inverter enters the PU stop status. (appears on the operation panel.)

To reset the PU stop status, turn OFF the start switch (STF or STR), and then press

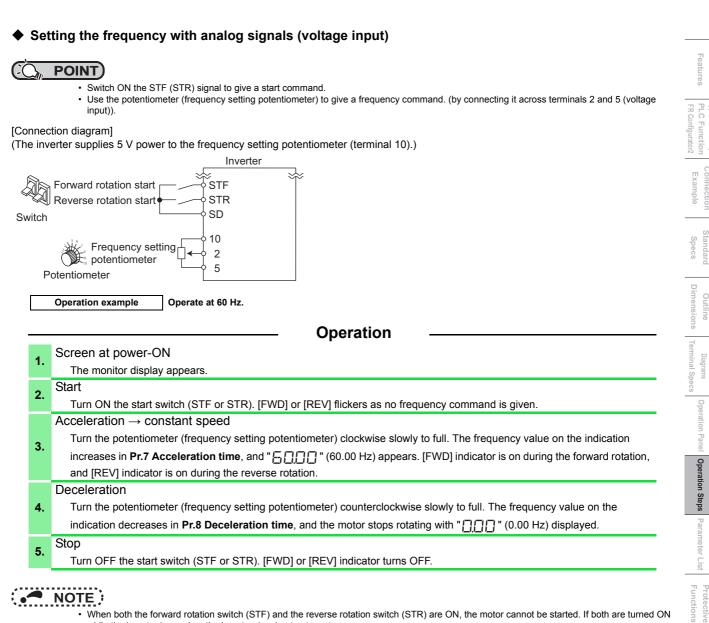
Operation Steps


LVS/Cables

Precautions

Motors

s of



• NOTE

- When both the forward rotation switch (STF) and the reverse rotation switch (STR) are ON, the motor cannot be started. If both are turned ON while the inverter is running, the inverter decelerates to a stop.
- The terminal RH is initially set to 60 Hz for the FM type inverter, and to 50 Hz for the CA type inverter. The terminal RM is set to 30 Hz, and the RL is set to 10 Hz. (To change, set **Pr.4, Pr.5, and Pr.6**.)
- In the initial setting, when two or more of multi-speed settings are simultaneously selected, priority is given to the set frequency of the lower signal.
- For example, when RH and RM signals turn ON, RM signal (Pr.5) has a higher priority.
- · Maximum of 15-speed operation can be performed.

NOTE :

- When both the forward rotation switch (STF) and the reverse rotation switch (STR) are ON, the motor cannot be started. If both are turned ON while the inverter is running, the inverter decelerates to a stop.
- Pr.178 STF terminal function selection must be set to "60" (or Pr.179 STR terminal function selection must be set to "61"). (All are initial values.)

Options

LVS/Cables

Precautions

- 10 M

• Changing the frequency (60 Hz, initial value) at the maximum voltage input (5 V, initial value) Change the maximum frequency.

Ch	Anging example With a 0 to 5 VDC input frequency setting potentiometer, change the frequency at 5 V from 60 Hz (initial value) to 50 Hz. Adjust the setting so that the inverter outputs 50 Hz when 5 V is input. Set "50 Hz" in Pr.125 .
_	Parameter selection
1.	Turn \bigcirc until P . P (Pr.125) appears. Press SET to show the present set value. (60.00 Hz)
2.	Changing the maximum frequency Turn to change the set value to " 5 [] [] ". (50.00 Hz) Press SET to enter the setting. " 5 [] [] " and " P. 2 5 " flicker alternately.
3.	Checking the mode/monitor Press MODE three times to change to the monitor / frequency monitor.
4.	Start Turn ON the start switch (STF or STR), then turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. (Refer to steps 2 and 3 in page 52 .) Operate at 50 Hz.
	• To set the frequency at 0 V, use the calibration parameter C2.
	(Pr.902) (Pr.902) (Pr.902) (Pr.902) (Pr.902) (Pr.902) (Pr.903) (Pr.903)

• Other adjustment methods for the frequency setting voltage gain are the following: adjustment by applying a voltage directly across terminals 2 and 5, and adjustment using a specified point without applying a voltage across terminals 2 and 5.

×

• Using an analog signal (current input) to give a frequency command

nec	ction diagram]
	Inverter
K	Forward rotation start
itch	♦ → AU
	Current signal source (4 to 20mADC) 5(-)
	(4 to 20mADC)
	Operation example Operate at 60 Hz.
	Operation
	Screen at nower-ON
1.	Screen at power-ON
	Screen at power-ON The monitor display appears.
1. 2.	Screen at power-ON
2.	Screen at power-ON The monitor display appears. Terminal 4 input selection
	Screen at power-ON The monitor display appears. Terminal 4 input selection Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled.
2.	Screen at power-ON The monitor display appears. Terminal 4 input selection Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled. Start
2.	Screen at power-ON The monitor display appears. Terminal 4 input selection Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled. Start Turn ON the start switch (STF or STR). [FWD] or [REV] flickers as no frequency command is given.
2. 3.	Screen at power-ON The monitor display appears. Terminal 4 input selection Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled. Start Turn ON the start switch (STF or STR). [FWD] or [REV] flickers as no frequency command is given. Acceleration → constant speed
2. 3.	Screen at power-ON The monitor display appears. Terminal 4 input selection Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled. Start Turn ON the start switch (STF or STR). [FWD] or [REV] flickers as no frequency command is given. Acceleration → constant speed Input 20 mA.The frequency value on the indication increases in Pr.7 Acceleration time , and "⊆□□□" (60.00 Hz)
2. 3.	Screen at power-ON The monitor display appears. Terminal 4 input selection Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled. Start Turn ON the start switch (STF or STR). [FWD] or [REV] flickers as no frequency command is given. Acceleration → constant speed Input 20 mA.The frequency value on the indication increases in Pr.7 Acceleration time , and " ⊆ □□□ " (60.00 Hz) appears. [FWD] indicator is on during the forward rotation, and [REV] indicator is on during the reverse rotation. Deceleration
2. 3. 4.	Screen at power-ON The monitor display appears. Terminal 4 input selection Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled. Start Turn ON the start switch (STF or STR). [FWD] or [REV] flickers as no frequency command is given. Acceleration → constant speed Input 20 mA.The frequency value on the indication increases in Pr.7 Acceleration time , and "☐ [] [] (60.00 Hz) appears. [FWD] indicator is on during the forward rotation, and [REV] indicator is on during the reverse rotation.
2. 3. 4.	Screen at power-ON The monitor display appears. Terminal 4 input selection Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled. Start Turn ON the start switch (STF or STR). [FWD] or [REV] flickers as no frequency command is given. Acceleration → constant speed Input 20 mA.The frequency value on the indication increases in Pr.7 Acceleration time , and "⊆□□□" (60.00 Hz) appears. [FWD] indicator is on during the forward rotation, and [REV] indicator is on during the reverse rotation. Deceleration Input 4 mA or less.The frequency value on the indication decreases in Pr.8 Deceleration time , and the motor stops rotating

X

- When both the forward rotation switch (STF) and the reverse rotation switch (STR) are ON, the motor cannot be started. If both are turned ON while the inverter is running, the inverter decelerates to a stop.
 Pr.184 AU terminal function selection must be set to "4" (AU signal) (initial value).

Warranty

Features

PLC Function

Connectior Example

Standard Specs

Dimensions Outline

Terminal Spec

Operation Panel

Operation Steps

neter List

Protective Functions

Options

LVS/Cables

Precautions

Motors

• Changing the frequency (60 Hz, initial value) at the maximum current input (at 20 mA, initial value) Change the maximum frequency.

Ch	Anging example With a 4 to 20 mA input frequency setting potentiometer, change the frequency at 20 mA from 60 Hz (initial value) to 50 Hz. Adjust the setting so that the inverter outputs 50 Hz when 20 mA is input. Set "50 Hz" in Pr.126 .
	Parameter selection Operation
1.	Turn until P. I2E (Pr.126) appears. Press SET to show the present set value. (60.00 Hz)
2.	Changing the maximum frequency Turn (to change the set value to " 5 [] [] ". (50.00 Hz) Press SET to enter the setting." 5 [] [] " and " P. 2 5 " flicker alternately.
3.	Checking the mode/monitor Press MODE three times to change to the monitor / frequency monitor.
4.	Start Turn ON the start switch (STF or STR), then turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. (Refer to steps 3 and 4 in page 54 .) Operate at 50 Hz.
	• To set the frequency at 4 mA, use the calibration parameter C5.
	• Other adjustment methods for the frequency setting current dain are the following: adjustment by applying a current through terminals 4 and

• Other adjustment methods for the frequency setting current gain are the following: adjustment by applying a current through terminals 4 and 5, and adjustment using a specified point without applying a current through terminals 4 and 5.

X

×

PLC Functior

• Inverter parameter list (by parameter number)

For simple variable-speed operation of the inverter, the initial value of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be made from the operation panel (FR-DU08).

- Simple indicates simple mode parameters. Use **Pr.160 User group read selection** to indicate the simple mode parameters only.
- parameters only.
 Parameter setting may be restricted in some operating statuses. Use Pr.77 Parameter write selection to change the setting.

Function Pr.		Pr.			Minimum	Initial value	Customer
Function	Pr.	group	Name	Setting range	setting increments	FM CA	setting
					incrementa	6% *1 4% *1 3% *1	-
	0	G000	Torque boost Simple	0 to 30%	0.1%	2% *1 1.5% *1 1% *1	-
	1	H400	Maximum frequency Simple	0 to 120 Hz	0.01 Hz	120 Hz *2 60 Hz *3	-
ŝ	2	H401	Minimum frequency Simple	0 to 120 Hz	0.01 Hz	0 Hz	
ction	3	G001	Base frequency Simple	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
Basic functions	4	D301	Multi-speed setting (high speed) Simple	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
Basi	5	D302	Multi-speed setting (middle speed) Simple	0 to 590 Hz	0.01 Hz	30 Hz	
	6	D303	Multi-speed setting (low speed) Simple	0 to 590 Hz	0.01 Hz	10 Hz	
	7	F010	Acceleration time Simple	0 to 3600 s	0.1 s	5 s *4 15 s *5	-
	8	F011	Deceleration time Simple	0 to 3600 s	0.1 s	10 s *4 30 s *5	-
	•	H000	Electronic thermal O/L relay Simple	0 to 500 A	0.01 A *2	Inverter rated	
	9	C103	Rated motor current Simple	0 to 3600 A	0.1 A *3	current	
n	10	G100	DC injection brake operation frequency	0 to 120 Hz, 9999	0.01 Hz	3 Hz	
ectic	11	G101	DC injection brake operation time	0 to 10 s, 8888	0.1 s	0.5 s	
DC injection brake	12	G110	DC injection brake operation voltage	0 to 30%	0.1%	4% *6 2% *6 1% *6	-
_	13	F102	Starting frequency	0 to 60 Hz	0.01 Hz	0.5 Hz	
—	14	G003	Load pattern selection	0, 1	1	1	
Jog operation	15	D200	Jog frequency	0 to 590 Hz	0.01 Hz	5 Hz	
opera	16	F002	Jog acceleration/deceleration time	0 to 3600 s	0.1 s	0.5 s	
—	17	T720	MRS input selection	0, 2, 4	1	0	
-	18	H402	High speed maximum frequency	0 to 590 Hz	0.01 Hz	120 Hz *2 60 Hz *3	-
_	19	G002	Base frequency voltage	0 to 1000 V, 8888, 9999	0.1 V	9999 8888	
Acceleration/ deceleration times	20	F000	Acceleration/deceleration reference frequency	1 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
Accele decele tim	21	F001	Acceleration/deceleration time increments	0, 1	1	0	
all ntion	22	H500	Stall prevention operation level	0 to 400%	0.1%	120% 110%	
Stall prevention	23	H610	Stall prevention operation level compensation factor at double speed	0 to 200%, 9999	0.1%	9999	
Multi-speed setting	24 to 27	D304 to D307	Multi-speed setting (4 speed to 7 speed)	0 to 590 Hz, 9999	0.01 Hz	9999	
_	28	D300	Multi-speed input compensation selection	0, 1	1	0	
-	29	F100	Acceleration/deceleration pattern selection	0 to 3, 6	1	0	

		Pr.			Minimum	Initial value	Customer
Function	Pr.	group	Name	Setting range	setting increments	FM CA	setting
_	30	E300	Regenerative function selection	0 to 2, 10, 11, 20, 21, 100 to 102, 110, 111, 120, 121 *10	1	0	
				2, 10, 11, 102, 110, 111 *11	1	10	
٩	31	H420	Frequency jump 1A	0 to 590 Hz, 9999	0.01 Hz	9999	
<u>n</u>	32	H421	Frequency jump 1B	0 to 590 Hz, 9999	0.01 Hz	9999	
Frequency jump	33	H422	Frequency jump 2A	0 to 590 Hz, 9999	0.01 Hz	9999	
Ianp	34	H423	Frequency jump 2B	0 to 590 Hz, 9999	0.01 Hz	9999	
Fre	35	H424	Frequency jump 3A	0 to 590 Hz, 9999	0.01 Hz	9999	
	36	H425	Frequency jump 3B	0 to 590 Hz, 9999	0.01 Hz	9999	
_	37	M000	Speed display	0, 1 to 9998	1	0	-
or o	41	M441	Up-to-frequency sensitivity	0 to 100%	0.1%	10%	
Frequency detection	42	M442	Output frequency detection	0 to 590 Hz	0.01 Hz	6 Hz	
ĔΡ	43	M443	Output frequency detection for reverse rotation	0 to 590 Hz, 9999	0.01 Hz	9999	
	44	F020	Second acceleration/deceleration time	0 to 3600 s	0.1 s	5 s	
	45	F021	Second deceleration time	0 to 3600 s, 9999	0.1 s	9999	
suo	46	G010	Second torque boost	0 to 30%, 9999	0.1%	9999	
Second functions	47	G011	Second V/F (base frequency)	0 to 590 Hz, 9999	0.01 Hz	9999	ļ
d fu	48	H600	Second stall prevention operation level	0 to 400%	0.1%	120% 110%	
con	49	H601	Second stall prevention operation frequency	0 to 590 Hz, 9999	0.01 Hz	0 Hz	
Se	50	M444	Second output frequency detection	0 to 590 Hz	0.01 Hz	30 Hz	
	51	H010 C203	Second electronic thermal O/L relay Rated second motor current	0 to 500 A, 9999 *2 0 to 3600 A, 9999 *3	0.01 A 0.1 A	9999	
tions	52	M100	Operation panel main monitor selection	0, 5 to 14, 17, 18, 20, 23 to 25, 34, 38, 40 to 45, 50 to 57, 61, 62, 64, 67 to 69, 81 to 96, 98, 100	1	0	
Monitor functions	54	M300	FM/CA terminal function selection	1 to 3, 5 to 14, 17, 18, 21, 24, 34, 50, 52, 53, 61, 62, 67, 69, 70, 85, 87 to 90, 92, 93, 95, 98	1	1	
Ň	55	M040	Frequency monitoring reference	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
	56	M041	Current monitoring reference	0 to 500 A *2	0.01 A	Inverter rated	
0				0 to 3600 A *3	0.1 A	current	
Automatic restart	57	A702	Restart coasting time	0, 0.1 to 30 s, 9999	0.1 s	9999	
Auto	58	A703	Restart cushion time	0 to 60 s	0.1 s	1 s	
-	59	F101	Remote function selection	0 to 3, 11 to 13	1	0	
-	60	G030	Energy saving control selection	0, 4, 9	1	0	
—	65	H300	Retry selection	0 to 5	1	0	
-	66	H611	Stall prevention operation reduction starting frequency	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
~	67	H301	Number of retries at fault occurrence	0 to 10, 101 to 110	1	0	
Retry	68	H302	Retry waiting time	0.1 to 600 s	0.1 s	1 s	
	69	H303	Retry count display erase	0	1	0	
-	70	G107	Parameter for manufacturer setting. Do not set.	0 += 0 40 += 40 00 00		1	1
-	71	C100	Applied motor	0 to 6, 13 to 16, 20, 23, 24, 40, 43, 44, 50, 53, 54, 70, 73, 74, 210, 213, 214, 8090, 8093, 8094, 9090, 9093, 9094	1	0	
-	72	E600	PWM frequency selection	0 to 15 *2 0 to 6, 25 *3	- 1	2	
—	73	T000	Analog input selection	0 to 7, 10 to 17	1	1	
—	74	T002	Input filter time constant	0 to 8	1	1	

F800

-	-	-	
_			I
PL.			f

		Pr.			Minimum	Initia	l value	Custome
unction	Pr.	group	Name	Setting range	setting increments	FM	CA	setting
			Reset selection/disconnected PU detection/	0 to 3, 14 to 17 *2				
		-	PU stop selection	0 to 3, 14 to 17, 100 to 103, 114 to 117 *3		14		
		E100	Reset selection	100 10 100, 114 10 117 *3	1			1
-	75	E101	Disconnected PU detection	0, 1		0		
		E102	PU stop selection	1		1]
		E107	Reset limit	0 *2	- 1	0]
	76	_		0, 1 *3	· ·	_		
-	76	M510 E400	Fault code output selection Parameter write selection	0 to 2 0 to 2	1	0		
_	78	D020	Reverse rotation prevention selection	0 to 2	1	0		
	79	D020		0 to 4, 6, 7	1	0		
	19		Operation mode selection Simple	0 to 4, 6, 7 0.4 to 55 kW, 9999 *2	1 0.01 kW *2	U		
	80	C101	Motor capacity	0.4 to 55 kW, 9999 *2 0 to 3600 kW, 9999 *3	0.01 KW *2 0.1 kW *3	9999		
	81	C102	Number of motor poles	2, 4, 6, 8, 10, 12, 9999	1	9999		1
	82	C125	Motor excitation current	0 to 500 A, 9999 *2	0.01 A *2	9999		
	02	0120		0 to 3600 A, 9999 *3	0.1 A *3		_	<u> </u>
	83	C104	Rated motor voltage	0 to 1000 V	0.1 V	200 V *		-
	84	C105	Rated motor frequency	10 to 400 Hz, 9999	0.01 Hz	9999		
nts	89	G932	Speed control gain (Advanced magnetic flux	0 to 200%, 9999	0.1%	9999		1
Motor constants			vector)	0 to 50 Ω, 9999 *2	0.001 Ω *2			
cor	90	C120	Motor constant (R1)	0 to 400 mΩ, 9999 *3	0.001 Ω *2 0.01 mΩ *3	9999		
otor	91	C121	Motor constant (R2)	0 to 50 Ω, 9999 *2	0.001 Ω *2	9999		
Ś				0 to 400 mΩ, 9999 *3	0.01 mΩ *3			
	92	C122	Motor constant (L1)/d-axis inductance (Ld)	0 to 6000mH, 9999 *2 0 to 400mH, 9999 *3	0.1 mH *2 0.01 mH *3	9999		
	93	C123	Motor constant (12)/g_axis inductance (1.a)	0 to 6000mH, 9999 *2	0.1 mH *2	9999		1
	93	0123	Motor constant (L2)/q-axis inductance (Lq)	0 to 400mH, 9999 *3	0.01 mH *3	2222		ļ
	94	C124	Motor constant (X)	0 to 100%, 9999	0.1% *2 0.01% *3	9999		
	95	C111	Online auto tuning selection	0, 1	1	0		
	96	C110	Auto tuning setting/status	0, 1, 11, 101	1	0		1
	100	G040	V/F1 (first frequency)	0 to 590 Hz, 9999	0.01 Hz	9999		
u.	101	G041	V/F1 (first frequency voltage)	0 to 1000 V	0.1 V	0 V		
l) s	102	G042	V/F2 (second frequency)	0 to 590 Hz, 9999	0.01 Hz	9999		
points V/F	103	G043	V/F2 (second frequency voltage)	0 to 1000 V	0.1 V	0 V		
	104	G044	(1 3)	0 to 590 Hz, 9999	0.01 Hz	9999		
able	105	G045	· · · · · ·	0 to 1000 V	0.1 V	0 V		ļ
Adjustable 5	106	G046		0 to 590 Hz, 9999	0.01 Hz	9999		
Ād	107 108	G047	V/F4 (fourth frequency voltage)	0 to 1000 V	0.1 V	0 V		
	108	G048 G049	V/F5 (fifth frequency) V/F5 (fifth frequency voltage)	0 to 590 Hz, 9999 0 to 1000 V	0.01 Hz 0.1 V	9999 0 V		
_	109	F031	Check valve deceleration time	0 to 3600 s, 9999	0.1 v 0.1 s	9999		
	117	N020	PU communication station number	0 to 31	1	0		
Ę	118	N021	PU communication speed	48, 96, 192, 384, 576,	1	192		1
PU connector communication	110	14021		768, 1152		192		
unic		-	PU communication stop bit length / data length	0, 1, 10, 11		1		
ũ L	119	N022	PU communication data length	0, 1	1	0]
r co		N023	PU communication stop bit length	0, 1		1		
ecto	120	N024	PU communication parity check	0 to 2	1	2		
onne	121	N025	Number of PU communication retries	0 to 10, 9999	1	1		
ŭ D	122	N026	PU communication check time interval	0, 0.1 to 999.8 s, 9999	0.1 s	9999		
٩	123	N027	PU communication waiting time setting	0 to 150 ms, 9999	1 ms	9999		
	124	N028	PU communication CR/LF selection	0 to 2	1	1	1	<u> </u>
-	125	T022	Terminal 2 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
			Simple Terminal 4 frequency setting gain frequency					<u> </u>
		T042	reminal a nequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	1

X

		Pr.			Minimum	Initia	value	Customer
Function	Pr.	group	Name	Setting range	setting increments	FM	СА	setting
	127	A612	PID control automatic switchover frequency	0 to 590 Hz, 9999	0.01 Hz	9999		
PID operation	128	A610	PID action selection	0, 10, 11, 20, 21, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 1000, 1001, 1010, 1011, 2000, 2001, 2010, 2011	1	0		
Dera	129	A613	PID proportional band	0.1 to 1000%, 9999	0.1%	100%		
10 Q	130	A614	PID integral time	0.1 to 3600 s, 9999	0.1 s	1 s		
đ	131	A601	PID upper limit	0 to 100%, 9999	0.1%	9999		
	132	A602	PID lower limit	0 to 100%, 9999	0.1%	9999		
	133	A611	PID action set point	0 to 100%, 9999	0.01%	9999		
	134	A615	PID differential time	0.01 to 10 s, 9999	0.01 s	9999		
	135	A000	Electronic bypass sequence selection	0, 1	1	0		
s.	136	A001	MC switchover interlock time	0 to 100 s	0.1 s	1 s		
Bypass	137	A002	Start waiting time	0 to 100 s	0.1 s	0.5 s		
â	138	A003	Bypass selection at a fault	0, 1	1	0		
	139	A004	Automatic switchover frequency from inverter to bypass operation	0 to 60 Hz, 9999	0.01 Hz	9999		
Чs	140	F200	Backlash acceleration stopping frequency	0 to 590 Hz	0.01 Hz	1 Hz		
Backlash measures	141	F201	Backlash acceleration stopping time	0 to 360 s	0.1 s	0.5 s		
3ach 1eas	142	F202	Backlash deceleration stopping frequency	0 to 590 Hz	0.01 Hz	1 Hz		
ш 2	143	F203	Backlash deceleration stopping time	0 to 360 s	0.1 s	0.5 s		
_	144	M002	Speed setting switchover	0, 2, 4, 6, 8, 10, 12, 102, 104, 106, 108, 110, 112	1	4		
Ы	145	E103	PU display language selection	0 to 7	1	-		
_	147	F022	Acceleration/deceleration time switching frequency	0 to 590 Hz, 9999	0.01 Hz	9999	I	
5	148	H620	Stall prevention level at 0 V input	0 to 400%	0.1%	120%	110%	
ectic	149	H621	Stall prevention level at 10 V input	0 to 400%	0.1%	150%	120%	
dete	150	M460	Output current detection level	0 to 400%	0.1%	120%	110%	
Current detection	151	M461	Output current detection signal delay time	0 to 10 s	0.1 s	0 s		
nr	152	M462	Zero current detection level	0 to 400%	0.1%	5%		
0	153	M463	Zero current detection time	0 to 10 s	0.01 s	0.5 s		
-	154	H631	Voltage reduction selection during stall prevention operation	0, 1, 10, 11	1	1		
-	155	T730	RT signal function validity condition selection	0, 10	1	0		
—	156	H501	Stall prevention operation selection	0 to 31, 100, 101	1	0		-
_	157 158	M430 M301	OL signal output timer AM terminal function selection	0 to 25 s, 9999 1 to 3, 5 to 14, 17, 18, 21, 24, 34, 50, 52 to 54, 61, 62, 67, 69, 70, 86 to 96, 98	0.1 s 1	0 s 1		
-	159	A005	Automatic switchover frequency range from bypass to inverter operation	0 to 10 Hz, 9999	0.01 Hz	9999		
_	160	E440	User group read selection Simple	0, 1, 9999	1	9999	0	
-	161	E200	Frequency setting/key lock operation selection	0, 1, 10, 11	1	0		
Automatic restart functions	162	A700	Automatic restart after instantaneous power failure selection	0 to 3, 10 to 13	1	0		
sta	163	A704	First cushion time for restart	0 to 20 s	0.1 s	0 s		
Aut	164	A705	First cushion voltage for restart	0 to 100%	0.1%	0%		
	165	A710	Stall prevention operation level for restart	0 to 400%	0.1%	120%	110%	-
Current detection	166	M433	Output current detection signal retention time	0 to 10 s, 9999	0.1 s	0.1 s		
Cur dete	167	M464	Output current detection operation selection	0, 1, 10, 11	1	0		
-	168 169	E000 E080 E001 E081	Parameter for manufacturer setting. Do not set.					
lative itor ar	170	M020	Watt-hour meter clear	0, 10, 9999	1	9999		
Cumulative monitor clear	171	M030	Operation hour meter clear	0, 9999	1	9999		

F800

	_	Pr.			Minimum	Initia	l value	Customer
unction	Pr.	group	Name	Setting range	setting increments	FM	СА	setting
	172	E441	User group registered display/batch clear	9999, (0 to 16)	1	0		
User group	173	E442	User group registration	0 to 1999, 9999	1	9999		
76	174	E443	User group clear	0 to 1999, 9999	1	9999		
	178	T700	STF terminal function selection	0 to 8, 10 to 14, 16, 18, 24, 25, 28, 37 to 40, 46 to 48, 50, 51, 60, 62, 64 to 67, 70 to 73, 77 to 81, 84, 94 to 98, 9999	1	60		
Input terminal function assignment	179	T701	STR terminal function selection	0 to 8, 10 to 14, 16, 18, 24, 25, 28, 37 to 40, 46 to 48, 50, 51, 61, 62, 64 to 67, 70 to 73, 77 to 81, 84, 94 to 98, 9999	1	61		
ctio	180	T702	RL terminal function selection		1	0		
func	181	T703	RM terminal function selection		1	1		
nal	182	T704	RH terminal function selection		1	2		
Ĩ	183	T705	RT terminal function selection	0 to 8, 10 to 14, 16, 18,	1	3		
ut te	184	T706	AU terminal function selection	24, 25, 28, 37 to 40,	1	4		
Inpu	185	T707	JOG terminal function selection	46 to 48, 50, 51, 62, 64 to 67, 70 to 73,	1	5		
	186	T708	CS terminal function selection	77 to 81, 84, 94 to 98,	1	9999		
	187	T709	MRS terminal function selection	9999	1	24 *10		
	_			4		10 *11		<u> </u>
	188	T710	STOP terminal function selection	_	1	25		
	189	T711	RES terminal function selection		1	62		
	190	M400	RUN terminal function selection	0 to 5, 7, 8, 10 to 19, 25, 26, 35, 39, 40, 45 to 54, 57, 64 to 68, 70 to 79, 82,	1	0		ļ
	191	M401	SU terminal function selection	85, 90 to 96, 98 to 105, 107, 108, 110 to 116, 125, 126, 135, 139, 140,	1	1		
	192	M402	IPF terminal function selection	145 to 154, 157, 164 to 168, 170 to 179, 182, 185, 190 to 196,	1	2 *10 9999 *1	1	-
gnment	193	M403	OL terminal function selection	198 to 208, 211 to 213, 215, 217 to 220, 226, 228 to 230, 300 to 308,	1	3		
function assignment	194	M404	FU terminal function selection	228 to 230, 300 to 308, 311 to 313, 315, 317 to 320, 326, 328 to 330, 9999	1	4		
Output terminal funct	195	M405	ABC1 terminal function selection	0 to 5, 7, 8, 10 to 19, 25, 26, 35, 39, 40, 45 to 54, 57, 64 to 68, 70 to 79, 82, 85, 90, 91, 94 to 96, 98 to 105, 107, 108, 110 to 116, 125, 126, 135, 139, 140, 145 to 154, 157, 164 to 168,	1	99		
	196	M406	ABC2 terminal function selection	170 to 179, 182, 185, 190, 191, 194 to 196, 198 to 208, 211 to 213, 215, 217 to 220, 226, 228 to 230, 300 to 308, 311 to 313, 315, 317 to 320, 326, 328 to 330, 9999	1	9999		
Multi-speed setting	232 to 239	D308 to D315	Multi-speed setting (8 speed to 15 speed)	0 to 590 Hz, 9999	0.01 Hz	9999		
_	240	E601	Soft-PWM operation selection	0, 1	1	1		
—	241	M043	Analog input display unit switchover	0, 1	1	0		
-	242	T021	Terminal 1 added compensation amount (terminal 2)	0 to 100%	0.1%	100%		
—	243	T041	Terminal 1 added compensation amount (terminal 4)	0 to 100%	0.1%	75%		
_	244	H100	Cooling fan operation selection	0, 1, 101 to 105	1	1		

×

Warranty Inquiry

-		Pr.			Minimum	Initial value	Customer
Function	Pr.	group	Name	Setting range	setting increments	FM CA	setting
tion	245	G203	Rated slip	0 to 50%, 9999	0.01%	9999	
Slip compensation	246	G204	Slip compensation time constant	0.01 to 10 s	0.01 s	0.5 s	
соп	247	G205	Constant-power range slip compensation selection	0, 9999	1	9999	
-	248	A006	Self power management selection	0 to 2	1	0	
_	249	H101	Earth (ground) fault detection at start	0, 1	1	0	
-	250	G106	Stop selection	0 to 100 s, 1000 to 1100 s, 8888, 9999	0.1 s	9999	
_	251	H200	Output phase loss protection selection	0, 1	1	1	
Frequency compensation function	252	T050	Override bias	0 to 200%	0.1%	50%	
Frequence	253	T051	Override gain	0 to 200%	0.1%	150%	
-	254	A007	Main circuit power OFF waiting time	1 to 3600 s, 9999	1 s	600 s	
	255	E700	Life alarm status display	(0 to 15)	1	0	
Life check	256 *12	E701	Inrush current limit circuit life display	(0 to 100%)	1%	100%	
	257	E702	Control circuit capacitor life display	(0 to 100%)	1%	100%	
Life	258 *12	E703	Main circuit capacitor life display	(0 to 100%)	1%	100%	
	259 *12	E704	Main circuit capacitor life measuring	0, 1	1	0	
_	260	E602	PWM frequency automatic switchover	0, 1	1	1	
<u>e</u>	261	A730	Power failure stop selection	0 to 2, 11, 12, 21, 22	1	0	
Power failure stop	262	A731	Subtracted frequency at deceleration start	0 to 20 Hz	0.01 Hz	3 Hz	
Inre	263	A732	Subtraction starting frequency	0 to 590 Hz, 9999	0.01 Hz	60 Hz 50 Hz	
fai	264	A733	Power-failure deceleration time 1	0 to 3600 s	0.1 s	5 s	
wer	265	A734	Power-failure deceleration time 2	0 to 3600 s, 9999	0.1 s	9999	
Å	266	A735	Power failure deceleration time switchover frequency	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
-	267	T001	Terminal 4 input selection	0 to 2	1	0	
-	268	M022	Monitor decimal digits selection	0, 1, 9999	1	9999	
—	269	E023	Parameter for manufacturer setting. Do not set.		1.		
_	289	M431	Inverter output terminal filter	5 to 50 ms, 9999	1 ms	9999	
_	290 291	M044 D100	Monitor negative output selection Pulse train I/O selection	0 to 7 [FM Type] 0, 1, 10, 11, 20, 21, 100 [CA Type]	1	0	
	294	A785	UV avoidance voltage gain	0, 1 0 to 200%	0.1%	100%	
	294	E201	Frequency change increment amount setting	0, 0.01, 0.1, 1, 10	0.01	0	
vord	296	E410	Password lock level	0 to 6, 99, 100 to 106, 199, 9999	1	9999	
Password function	297	E411	Password lock/unlock	(0 to 5), 1000 to 9998, 9999	1	9999	
_	298	A711	Frequency search gain	0 to 32767, 9999	1	9999	
_	299	A701	Rotation direction detection selection at restarting	0, 1, 9999	1	9999	

unction	Dr	Pr.	Namo	Satting range	Minimum	Initia	l value	Custome
unction	Pr.	group	Name	Setting range	setting increments	FM	CA	setting
	331	N030	RS-485 communication station number	0 to 31 (0 to 247)	1	0		
	332	N031	RS-485 communication speed	3, 6, 12, 24, 48, 96, 192,	1	96	-	
			RS-485 communication stop bit length / data	384, 576, 768, 1152				
	222	-	length	0, 1, 10, 11	1	1		
Ę	333	N032	PU communication data length	0, 1	1	0		1
RS-485 communication		N033	PU communication stop bit length	0, 1	1	1		
nic	334	N034	RS-485 communication parity check selection	0 to 2	1	2		
nmu	335	N035	RS-485 communication retry count	0 to 10, 9999	1	1		
cor	336	N036	RS-485 communication check time interval	0 to 999.8 s, 9999	0.1 s	0 s		
485	337	N037	RS-485 communication waiting time setting	0 to 150 ms, 9999	1 ms	9999		
RS-	338	D010	Communication operation command source	0, 1	1	0		
	339	D011	Communication speed command source	0 to 2	1	0		
	340	D001	Communication startup mode selection	0 to 2, 10, 12	1	0		
	341	N038	RS-485 communication CR/LF selection	0 to 2	1	1		<u> </u>
	342	N001	Communication EEPROM write selection	0, 1	1	0		
	343	N080	Communication error count	-	1	0		<u> </u>
-	374	H800	Overspeed detection level	0 to 590 Hz, 9999	0.01 Hz	9999		
rt i	384	D101	Input pulse division scaling factor	0 to 250	1	0		
train input	385 386	D110 D111	Frequency for zero input pulse	0 to 590 Hz	0.01 Hz	0 Hz	50 L -	
	386		Frequency for maximum input pulse	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
_	390 414	N054 A800	% setting reference frequency	1 to 590 Hz	0.01 Hz	60 Hz 0	50 Hz	
	414	A800 A801	PLC function operation selection	0 to 2 0, 1	1	0		-
PLC function	415	A801 A802	Inverter operation lock mode setting Pre-scale function selection	0, 1 0 to 5	1	0		
fui	416	A802	Pre-scale function selection Pre-scale setting value	0 to 32767	1	1		+
	450	C200	Second applied motor	0, 1, 3 to 6, 13 to 16, 20, 23, 24, 40, 43, 44, 50, 53, 54, 70, 73, 74, 210, 213, 214, 8093, 8094, 9090, 9093, 9094, 9999	1	9999		
	453	C201	Second motor capacity	0.4 to 55 kW, 9999 *2 0 to 3600 kW, 9999 *3	0.01 kW *2 0.1 kW *3	9999		
	454	C202	Number of second motor poles	2, 4, 6, 8, 10, 12, 9999	1	9999		
ants	455	C225	Second motor excitation current	0 to 500 A, 9999 *2 0 to 3600 A, 9999 *3	0.01 A *2 0.1 A *3	9999		
constants	456	C204	Rated second motor voltage	0 to 1000 V	0.1 V	200 V 400 V		-
tor (457	C205	Rated second motor frequency	10 to 400 Hz, 9999	0.01 Hz	9999		
mot				0 to 50 Ω, 9999 *2	0.001 Ω *2			
puq	458	C220	Second motor constant (R1)	0 to 400 mΩ, 9999 *3	0.01 mΩ *3	9999		<u> </u>
Second motor c	459	C221	Second motor constant (R2)	0 to 50 Ω, 9999 *2	0.001 Ω*2	9999		
0				0 to 400 mΩ, 9999 *3 0 to 6000mH, 9999 *2	0.01 mΩ *3			
	460	C222	Second motor constant (L1) / d-axis inductance (Ld)	0 to 400mH, 9999 *2	0.1 mH *2 0.01 mH *3	9999		
	464	C 2 2 2	Second motor constant (L2) / q-axis	0 to 6000mH, 9999 *2	0.1 mH *2	0000		1
	461	C223	inductance (Lq)	0 to 400mH, 9999 *3	0.01 mH *3	9999		
	462	C224	Second motor constant (X)	0 to 100%, 9999	0.1% *2 0.01% *3	9999		
	463	C210	Second motor auto tuning setting/status	0, 1, 11, 101	1	0		
	495	M500	Remote output selection	0, 1, 10, 11	1	0		
put	496				1	0		+
output		M501	Remote output data 1	0 to 4095				}
	497	M502	Remote output data 2	0 to 4095	1	0		ļ
_	498	A804	PLC function flash memory clear	0 to 9999	1	0		ļ
_	502	N013	Stop mode selection at communication error	0 to 3	1	0		
Maintenance	503	E710	Maintenance timer 1	0 (1 to 9998)	1	0		
Maint	504	E711	Maintenance timer 1 warning output set time	0 to 9998, 9999	1	9999		
—	505	M001	Speed setting reference	1 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
-	514 *12	H324	Emergency drive dedicated retry waiting time	0.1 to 600 s, 9999	0.1 s	9999		
-	515 *12	H322	Emergency drive dedicated retry count	1 to 200, 9999	1	1		
					•			

		Pr.			Minimum	Initia	value	Customer
Function	Pr.	group	Name	Setting range	setting increments	FM	СА	setting
—	522	G105	Output stop frequency	0 to 590 Hz, 9999	0.01 Hz	9999		
_	523 *12	H320	Emergency drive mode selection	100, 111, 112, 121 to 124, 200, 211, 212, 221 to 224, 300, 311, 312, 321 to 324, 400, 411, 412, 421 to 424, 9999	1	9999		
—	524 *12	H321	Emergency drive running speed	0 to 590 Hz, 9999	0.01 Hz	9999		
-	539	N002	MODBUS RTU communication check time interval	0 to 999.8 s, 9999	0.1 s	9999		
USB	547	N040	USB communication station number	0 to 31	1	0		
Š	548	N041	USB communication check time interval	0 to 999.8 s, 9999	0.1 s	9999		
ation	549	N000	Protocol selection	0, 1, 2	1	0		
Communication	550	D012	NET mode operation command source selection	0, 1, 9999	1	9999		
Com	551	D013	PU mode operation command source selection	1 to 3, 9999	1	9999		
_	552	H429	Frequency jump range	0 to 30 Hz, 9999	0.01 Hz	9999		
PID control	553	A603	PID deviation limit	0 to 100%, 9999	0.1%	9999		
CON	554	A604	PID signal operation selection	0 to 7, 10 to 17	1	0		
age	555	E720	Current average time	0.1 to 1 s	0.1 s	1 s		
aver	556	E721	Data output mask time	0 to 20 s	0.1 s	0 s		
Current average value monitor	557	E722	Current average value monitor signal output	0 to 500 A*2	0.01 A *2	Inverter rated		
2 ×			reference current	0 to 3600 A*3	0.1 A *3	current		
_	560	A712	Second frequency search gain	0 to 32767, 9999	1	9999		
_	561	H020	PTC thermistor protection level	0.5 to 30 kΩ, 9999	0.01 kΩ	9999		
_	563	M021	Energization time carrying-over times	(0 to 65535)	1	0		
_	564	M031	Operating time carrying-over times	(0 to 65535)	1	0		1
Second motor constants	569	G942	Second motor speed control gain	0 to 200%, 9999	0.1%	9999		
Multiple rating	570	E301	Multiple rating setting	0, 1	1	1	0	
-	571	F103	Holding time at a start	0 to 10 s, 9999	0.1 s	9999		
-	573	A680 T052	4 mA input check selection	1 to 4, 9999	1	9999		
_	574	C211	Second motor online auto tuning	0, 1	1	0		
-	575	A621	Output interruption detection time	0 to 3600 s, 9999	0.1 s	1 s		
PID control	576	A622	Output interruption detection level	0 to 590 Hz	0.01 Hz	0 Hz		
- 8	577	A623	Output interruption cancel level	900 to 1100%	0.1%	1000%		
	578	A400	Auxiliary motor operation selection	0 to 3	1	0		
	579	A401	Motor connection function selection	0 to 3	1	0		
	580	A402	MC switching interlock time	0 to 100 s	0.1 s	1 s		
	581	A403	Start waiting time	0 to 100 s	0.1 s	1 s		
noi	582	A404	Auxiliary motor connection-time deceleration time	0 to 3600 s, 9999	0.1 s	1 s		
Multi-pump function	583	A405	Auxiliary motor disconnection-time acceleration time	0 to 3600 s, 9999	0.1 s	1 s	[
dur	584	A406	Auxiliary motor 1 starting frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	ļ
ti-pu	585	A407	Auxiliary motor 2 starting frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	ļ
Mult	586	A408	Auxiliary motor 3 starting frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	ļ
	587	A409	Auxiliary motor 1 stopping frequency	0 to 590 Hz	0.01 Hz	0 Hz		ļ
	588	A410	Auxiliary motor 2 stopping frequency	0 to 590 Hz	0.01 Hz	0 Hz		ļ
	589	A411	Auxiliary motor 3 stopping frequency	0 to 590 Hz	0.01 Hz	0 Hz		ļ
	590 591	A412 A413	Auxiliary motor start detection time	0 to 3600 s 0 to 3600 s	0.1 s 0.1 s	5 s 5 s		

X

		Pr.			Minimum	Initial value	Customer
unction	Pr.	group	Name	Setting range	setting increments	FM CA	setting
	592	A300	Traverse function selection	0 to 2	1	0	
tion	593	A301	Maximum amplitude amount	0 to 25%	0.1%	10%	
Traverse function	594	A302	Amplitude compensation amount during deceleration	0 to 50%	0.1%	10%	
erse	595	A303	Amplitude compensation amount during acceleration	0 to 50%	0.1%	10%	
Trav	596	A304	Amplitude acceleration time	0.1 to 3600 s	0.1 s	5 s	dIOIZ
	597	A305	Amplitude deceleration time	0.1 to 3600 s	0.1 s	5 s	-
_	598 *13	H102	Undervoltage level	350 to 430 V, 9999	0.1 V	9999	
-	599	T721	X10 terminal input selection	0, 1	1	0 *10 1 *11	
lal	600	H001	First free thermal reduction frequency 1	0 to 590 Hz, 9999	0.01 Hz	9999	-
Electronic thermal O/L relay	601	H002	First free thermal reduction ratio 1	1 to 100%	1%	100%	
rels	602	H003	First free thermal reduction frequency 2	0 to 590 Hz, 9999	0.01 Hz	9999	
o/L	603	H004	First free thermal reduction ratio 2	1 to 100%	1%	100%	-
Elec	604	H005	First free thermal reduction frequency 3	0 to 590 Hz, 9999	0.01 Hz	9999	
-			Power failure stop external signal input	,			
-	606	T722	selection	0, 1	1	1	
_	607	H006	Motor permissible load level	110 to 250%	1%	150%	
-	608	H016	Second motor permissible load level	110 to 250%, 9999	1%	9999	
PID control	609	A624	PID set point/deviation input selection	1 to 5	1	2	
щõ	610	A625	PID measured value input selection	1 to 5, 101 to 105	1	3	
—	611	F003	Acceleration time at a restart	0 to 3600 s, 9999	0.1 s	9999	
ed hing rol	653	G410	Speed smoothing control	0 to 200%	0.1%	0%	
Speed smoothing control	654	G411	Speed smoothing cutoff frequency	0 to 120 Hz	0.01 Hz	20 Hz	
~ -	655	M530	Analog remote output selection	0, 1, 10, 11	1	0	_
note	656	M531	Analog remote output 1	800 to 1200%	0.1%	1000%	
Analog remote output function	657	M532	Analog remote output 2	800 to 1200%	0.1%	1000%	
tput	658	M533	Analog remote output 3	800 to 1200%	0.1%	1000%	
Ar	659	M534	Analog remote output 4	800 to 1200%	0.1%	1000%	-
netic	660	G130	Increased magnetic excitation deceleration operation selection	0, 1	1	0	
Increased magnetic excitation deceleration	661	G131	Magnetic excitation increase rate	0 to 40%, 9999	0.1%	9999	
Increa excitation	662	G132	Increased magnetic excitation current level	0 to 300%	0.1%	100%	_
-	663	M060	Control circuit temperature signal output level	0 to 100°C	1°C	0°C	
-	665	G125		0 to 200%	0.1%	100%	
_	668	A786		0 to 200%	0.1%	100%	
—	673	G060	SF-PR slip amount adjustment operation selection	2, 4, 6, 9999	1	9999	
-	674	G061	SF-PR slip amount adjustment gain	0 to 500%	0.1%	100%	
_	684	C000	Tuning data unit switchover	0, 1	1	0	
JCe	686	E712	Maintenance timer 2	0 (1 to 9998)	1	0	
anan	687	E713	Maintenance timer 2 warning output set time	0 to 9998, 9999	1	9999	
Maintenance	688	E714	Maintenance timer 3	0 (1 to 9998)	1	0	
Ma	689	E715	Maintenance timer 3 warning output set time	0 to 9998, 9999	1	9999	
nal	692	H011	Second free thermal reduction frequency 1	0 to 590 Hz, 9999	0.01 Hz	9999	
hern ay	693	H012	Second free thermal reduction ratio 1	1 to 100%	1%	100%	
nic t - relâ	694	H013	Second free thermal reduction frequency 2	0 to 590 Hz, 9999	0.01 Hz	9999	
Electronic thermal O/L relay	695	H014	Second free thermal reduction ratio 2	1 to 100%	1%	100%	
e	696	H015	Second free thermal reduction frequency 3	0 to 590 Hz, 9999	0.01 Hz	9999	
Ш	030						

		Pr.			Minimum	Initial value	Customer
Function	Pr.	group	Name	Setting range	setting increments	FM CA	setting
	702	C106	Maximum motor frequency	0 to 400 Hz, 9999	0.01 Hz	9999	
Motor constants	706	C130	Induced voltage constant (phi f)	0 to 5000 mV/(rad/s), 9999	0.1 mV/(rad/ s)	9999	
ts	707	C107	Motor inertia (integer)	10 to 999, 9999	1	9999	
star	711	C131	Motor Ld decay ratio	0 to 100%, 9999	0.1%	9999	
con	712	C132	Motor Lq decay ratio	0 to 100%, 9999	0.1%	9999	
tor	717	C182	Starting resistance tuning compensation	0 to 200%, 9999	0.1%	9999	
Mo	721	C185	Starting magnetic pole position detection pulse width	0 to 6000 μs, 10000 to 16000 μs, 9999	1 μs	9999	
	724	C108	Motor inertia (exponent)	0 to 7. 9999	1	9999	
	725	C133	Motor protection current level	100 to 500%, 9999	0.1%	9999	
۵.	726	N050	Auto Baudrate/Max Master	0 to 255	1	255	
BACnet MS/TP protocol	727	N051	Max Info Frames	1 to 255	1	1	
troto	728	N052	Device instance number (Upper 3 digits)	0 to 419 (0 to 418)	1	0	
BAC	729	N053	Device instance number (Lower 4 digits)	0 to 9999 (0 to 4302)	1	0	
	738	C230	Second motor induced voltage constant (phi f)	0 to 5000 mV/(rad/s),	0.1 mV/(rad/	9999	
	739	C231	Second motor Ld decay ratio	9999 0 to 100%, 9999	s) 0.1%	9999	
(0	740	C232	Second motor Lq decay ratio	0 to 100%, 9999	0.1%	9999	<u> </u>
stants	741	C282	Second starting resistance tuning	0 to 200%, 9999	0.1%	9999	
Motor constants	742	C285	compensation Second motor magnetic pole detection pulse width	0 to 6000 μs, 10000 to 16000 μs, 9999	1 μs	9999	
loto	743	C206	Second motor maximum frequency	0 to 400 Hz, 9999	0.01 Hz	9999	
Σ	744	C207	Second motor inertia (integer)	10 to 999, 9999	1	9999	
	745	C208	Second motor inertia (exponent)	0 to 7, 9999	1	9999	
	746	C233	Second motor protection current level	100 to 500%, 9999	0.1%	9999	
	753	A650	Second PID action selection	0, 10, 11, 20, 21, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 1000, 1001, 1010, 1011, 2000, 2001, 2010, 2011	1	0	
PID control	754	A652	Second PID control automatic switchover frequency	0 to 590 Hz, 9999	0.01 Hz	9999	
DC	755	A651	Second PID action set point	0 to 100%, 9999	0.01%	9999	
F	756	A653	Second PID proportional band	0.1 to 1000%, 9999	0.1%	100%	
	757	A654	Second PID integral time	0.1 to 3600 s, 9999	0.1 s	1 s	
	758	A655	Second PID differential time	0.01 to 10 s, 9999	0.01 s	9999	
	759	A600	PID unit selection	0 to 43, 9999	1	9999	
	760	A616	Pre-charge fault selection	0, 1	1	0	
E.	761	A617	Pre-charge ending level	0 to 100%, 9999	0.1%	9999	
nctic	762	A618	Pre-charge ending time	0 to 3600 s, 9999	0.1 s	9999	
e fur	763	A619	Pre-charge upper detection level	0 to 100%, 9999	0.1%	9999	
arge	764	A620	Pre-charge time limit	0 to 3600 s, 9999	0.1 s	9999	
e-ch	765 766	A656	Second pre-charge fault selection	0, 1	1	0	
PID pre-charge function	767	A657 A658	Second pre-charge ending level Second pre-charge ending time	0 to 100%, 9999 0 to 3600 s, 9999	0.1% 0.1 s	9999 9999	
ЫС	768	A659	Second pre-charge ending time	0 to 100%, 9999	0.1%	9999	
	769	A660	Second pre-charge time limit	0 to 3600 s, 9999	0.1 s	9999	
	774	M101	Operation panel monitor selection 1	1 to 3, 5 to 14, 17, 18, 20,	1	9999	
Monitor function	775	M102	Operation panel monitor selection 2	23 to 25, 34, 38, 40 to 45, 50 to 57, 61, 62, 64,	1	9999	
Mo				67 to 69, 81 to 96, 98,			
_	776 777	M103 A681	Operation panel monitor selection 3 4 mA input check operation frequency	100, 9999 0 to 590 Hz, 9999	1 0.01 Hz	9999	
	778	T053 A682		0 to 10 s		0 s	
_		T054	4 mA input check filter		0.01 s	05	
-	779	N014	Operation frequency during communication error	0 to 590 Hz, 9999	0.01 Hz	9999	
-	791	F070	Acceleration time in low-speed range	0 to 3600 s, 9999	0.1 s	9999	
_	792	F071 M520	Deceleration time in low-speed range	0 to 3600 s, 9999 0.1, 1, 10, 100, 1000 kWh	0.1 s	9999	

		Dr			Minimum	Initia	l value	Customer
Function	Pr.	Pr. group	Name	Setting range	setting	FM	CA	setting
_	800	G200	Control method selection	9, 20	increments	20		j
	820	G211	Speed control P gain 1	0 to 1000%	1%	25%		
	821	G212	Speed control integral time 1	0 to 20 s	0.001 s	0.333 s		1
	822	T003	Speed setting filter 1	0 to 5 s, 9999	0.001 s	9999		
	824	G213	Torque control P gain 1 (current loop	0 to 500%	1%	50%		
5	-		proportional gain)	0 10 300 %	1 /0	50 %		
Adjustment function	825	G214	Torque control integral time 1 (current loop integral time)	0 to 500 ms	0.1 ms	40 ms		
it fu	827	G216	Torque detection filter 1	0 to 0.1 s	0.001 s	0 s		
mer	828	G224	Parameter for manufacturer setting. Do not set.	•				
just	830	G311	Speed control P gain 2	0 to 1000%, 9999	1%	9999		
Ad	831	G312	Speed control integral time 2	0 to 20 s, 9999	0.001 s	9999		
	832	T005	Speed setting filter 2	0 to 5 s, 9999	0.001 s	9999		
	834	G313	Torque control P gain 2	0 to 500%, 9999	1%	9999		
	835	G314	Torque control integral time 2	0 to 500 ms, 9999	0.1 ms	9999		
	837	G316	Torque detection filter 2	0 to 0.1 s, 9999	0.001 s	9999		<u> </u>
uo	849	T007	Analog input offset adjustment	0 to 200%	0.1%	100%		
ncti	858	T040	Terminal 4 function assignment	0, 4, 9999	1	0		
al fu	859	C126	Torque current/Rated PM motor current	0 to 500 A, 9999 *2 0 to 3600 A, 9999 *3	0.01 A *2 0.1 A *3	9999		
Additional function	000	0000	Second motor torgue current/Rated PM motor	0 to 500 A, 9999 *3	0.01 A *2	0000		+
ddit	860	C226	current	0 to 3600 A, 9999 *3	0.1 A *3	9999		
	864	M470	Torque detection	0 to 400%	0.1%	150%		
Indication function	866	M042	Torque monitoring reference	0 to 400%	0.1%	150%		
_	867	M321	AM output filter	0 to 5 s	0.01 s	0.01 s		
-	868	T010	Terminal 1 function assignment	0, 4, 9999	1	0		
-	869	M334	Current output filter	0 to 5 s	0.01 s	-	0.02 s	
-	870	M440	Speed detection hysteresis	0 to 5 Hz	0.01 Hz	0 Hz		
Protective Functions	872 *12	H201	Input phase loss protection selection	0, 1	1	0		
Fund	874	H730	OLT level setting	0 to 400%	0.1%	120%	110%	
e	882	G120	Regeneration avoidance operation selection	0 to 2	1	0		
oidar	883	G121	Regeneration avoidance operation level	300 to 800 V	0.1V	DC380		-
ion av Iction	884	G122	Regeneration avoidance at deceleration detection sensitivity	0 to 5	1	0		
Regeneration avoidance function	885	G123	Regeneration avoidance compensation frequency limit value	0 to 590 Hz, 9999	0.01 Hz	6 Hz		
Rege	886	G124	Regeneration avoidance voltage gain	0 to 200%	0.1%	100%		
Free parameters	888	E420	Free parameter 1	0 to 9999	1	9999		
Fr	889	E421	Free parameter 2	0 to 9999	1	9999		
	891	M023		0 to 4, 9999	1	9999		
L	892	M200	Load factor	30 to 150%	0.1%	100%		
Energy saving monitor	893	M201	Energy saving monitor reference (motor capacity)	0.1 to 55 kW *2 0 to 3600 kW *3	0.01 kW *2 0.1 kW *3	Inverter capacity		
/ing n	894	M202	Control selection during commercial power- supply operation	0 to 3	1	0		
sav	895	M203		0, 1, 9999	1	9999		<u> </u>
srgy	896	M204		0 to 500, 9999	0.01	9999		
Ene	897	M205		0 to 1000 h, 9999	1 h	9999		<u> </u>
	898	M206		0, 1, 10, 9999	1	9999		
	899	M207	Operation time rate (estimated value)	0 to 100%, 9999	0.1%	9999		1

×

Warranty Inquiry

		Pr.			Minimum	Initial value		Customer
Function	Pr.	group	Name	Setting range	setting increments	FM CA		setting
	C0 (900) *9	M310	FM/CA terminal calibration	-	_	_	l	
	C1 (901) *9	M320	AM terminal calibration	-	-	-		
	C2 (902) *9	T200	Terminal 2 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz		
	C3 (902) *9	T201	Terminal 2 frequency setting bias	0 to 300%	0.1%	0%		
	125 (903) *9	T202	Terminal 2 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
ers	C4 (903) *9	T203	Terminal 2 frequency setting gain	0 to 300%	0.1%	100%		
Calibration parameters	C5 (904) *9	T400	Terminal 4 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz		
alibration	C6 (904) *9	T401	Terminal 4 frequency setting bias	0 to 300%	0.1%	20%		
Ca	126 (905) *9	T402	Terminal 4 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
	C7 (905) *9	T403	Terminal 4 frequency setting gain	0 to 300%	0.1%	100%		
	C12 (917) *9	T100	Terminal 1 bias frequency (speed)	0 to 590 Hz	0.01 Hz	0 Hz		
	C13 (917) *9	T101	Terminal 1 bias (speed)	0 to 300%	0.1%	0%		
	C14 (918) *9	T102	Terminal 1 gain frequency (speed)	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
	C15 (918) *9	T103	Terminal 1 gain (speed)	0 to 300%	0.1%	100%		

F800

					Minimum	Initia	value	Quet
Function	Pr.	Pr. group	Name	Setting range	setting	FM	CA	Customer setting
	040	group			increments	L, IAI	CA	setting
	C16 (919)	T110	Terminal 1 bias command (torque)	0 to 400%	0.1%	0%		
	(919)	1110		0 10 700 /0	0.170	0 /0		
	C17					1		
	(919)	T111	Terminal 1 bias (torque)	0 to 300%	0.1%	0%		
	*9							
	C18	TAAO		0.1. 40001	0.40	45001		
	(920) *9	T112	Terminal 1 gain command (torque)	0 to 400%	0.1%	150%		
	-+9 C19							
	(920)	T113	Terminal 1 gain (torque)	0 to 300%	0.1%	100%		
	*9	-						
	C8							
	(930)	M330	Current output bias signal	0 to 100%	0.1%	—		
	*9							
	C9 (930)	M331	Current output bias current	0 to 100%	0.1%	_	0%	
	(330) *9	101331		0.010070	0.170		0 /0	
	C10							
	(931)	M332	Current output gain signal	0 to 100%	0.1%	_	100%	
S	*9							
nete	C11	Maga					10551	
Iran	(931)	M333	Current output gain current	0 to 100%	0.1%	—	100%	
Calibration parameters	*9 C38					1		
atio	(932)	T410	Terminal 4 bias command (torque)	0 to 400%	0.1%	0%		
libra	*9							
Ca	C39						_	
	(932)	T411	Terminal 4 bias (torque)	0 to 300%	0.1%	20%		
	*9							
	C40 (933)	T412	Terminal 4 gain command (torque)	0 to 400%	0.1%	150%		
	(933) +9	1412	i cininai 4 gain command (torque)		0.170	100%		
	C41							
	(933)	T413	Terminal 4 gain (torque)	0 to 300%	0.1%	100%		
	*9							
	C42	A 000	PID display bigs coefficient	0 1. 500.0000	0.01			
	(934)	A630	PID display bias coefficient	0 to 500, 9999	0.01	9999		
	*9 C43					+		<u> </u>
	(934)	A631	PID display bias analog value	0 to 300%	0.1%	20%		
	*9							
	C44	_						
	(935) A632		PID display gain coefficient	0 to 500, 9999	0.01	9999		
	*9							
	C45 (935)	A633	PID display gain analog value	0 to 300%	0.1%	100%		
	(935) +9	7033		0 10 000 /0	0.170	100 %		
_	977	E302	Input voltage mode selection	0, 1	1	0		
				10 *2		10 *2		
-	989	E490	Parameter copy alarm release	100 *3	1	100 *3		
PU	990	E104	PU buzzer control	0, 1	1	1		
٩	991	E105	PU contrast adjustment	0 to 63	1	58		
55				0 to 3, 5 to 14, 17, 18, 20,				
Monitor function	992	M104	Operation panel setting dial push monitor	23 to 25, 34, 38, 40 to 45, 50 to 57, 61, 62, 64,	1	0		
Mo			selection	67 to 69, 81 to 96, 98,	·	Ĩ		
	007	11400		100				
-	997	H103	Fault initiation	0 to 255, 9999	1	9999		
-	998	E430	PM parameter initialization Simple	0, 12, 112, 8009, 8109, 9009, 9109	1	0		
_	999	E431	Automatic parameter setting Simple	1, 2, 10, 11, 12, 13, 20,	1	9999		
				21, 9999	'	5555		
—	1000	E108	Parameter for manufacturer setting. Do not set. Lq tuning target current adjustment					
	1002	C150						

Warranty Inquiry

Function Pr. group Name Setting range method table increments FM CA 9050 1006 E020 Clock (year) 2000 to 2099 1 2000 1007 E021 Clock (month, day) 1/1 to 1231 1 101 1008 E022 Clock (hour, minute) 0.00 to 23:59 1 0 - 1015 A607 Integral stop selection at limited frequency 0.1, 10, 11 1 0 - - 1016 H021 PT termistor protection detection time 0 to 60 s 1 s 0 - - 1016 H021 PT termistor protection detection 0 to 4 1 0 - - 1018 M045 Monitor with sign selection 0 to 4 1 0 - 1021 A901 Trace operation selection 0 to 4 1 0 - 1022 A902 Sampling cycle 0 to 10 1 0 - 1024 A904	Customer	
Yeige 003 1007 E021 Clock (month, day) 1/1 to 12/31 1 101 1008 E022 Clock (hour, minute) 0:00 to 23:59 1 0 - 1013 •12 H323 Running speed after emergency drive retry reset 0:to 590 Hz 0.01 Hz 60 Hz 50 Hz - 1015 A607 Integral stop selection at limited frequency 0.1, 10, 11 1 0 - 1016 H021 PTC themistor protection detection time 0:to 60 s 1 s 0 s - 1018 M045 Monitor with sign selection 0:to 4 1 0 - 1020 A900 Trace operation selection 0:to 4 1 0 - 1021 A903 Number of analog channels 1 to 8 1 4 - 1022 A903 Number of analog channels 1 to 8 1 4 - 1023 A903 Number of sampling before trigger 0 to 100% 1% 90% 201 -	setting	
Initial <		
Initial <		
- - 1323 reset 0 to 590 Hz 0.01 Hz 60 Hz <th6< th=""><th></th></th6<>		
- 1016 H021 PTC thermistor protection detection time 0 to 60 s 1 s 0 s - 1018 M045 Monitor with sign selection 0,9999 1 9999 1020 A900 Trace operation selection 0 to 4 1 0 1021 A901 Trace operation selection 0 to 2 1 0 1022 A902 Sampling cycle 0 to 9 1 2 1023 A903 Number of analog channels 1 to 8 1 4 1024 A904 Sampling auto start 0, 1 1 0 0 1025 A905 Trigger mode selection 0 to 4 1 0 0 1026 A906 Number of sampling before trigger 0 to 100% 1% 90% 201 1028 A911 Analog source selection (3ch) 1 to 3, 5 to 14, 17, 18, 20, 23, 23, 40 to 22, 237, 238 204 205 1031 A914 Analog source selection (3ch) 21 to 54, 61, 62, 64, 67, 162, 64, 67, 162, 64, 67, 162, 64, 67, 162, 64, 67, 1		
- 1018 M045 Monitor with sign selection 0,999 1 9999 1020 A900 Trace operation selection 0 to 4 1 0 1021 A901 Trace operation selection 0 to 2 1 0 1022 A902 Sampling cycle 0 to 9 1 2 1023 A903 Number of analog channels 1 to 8 1 4 1024 A904 Sampling auto start 0, 1 1 0 1025 A905 Trigger mode selection 0 to 4 1 0 1026 A906 Number of sampling before trigger 0 to 100% 1% 90% 1027 A910 Analog source selection (2ch) 1 to 3, 5 to 14, 17, 18, 20, 23, 24, 34, 40 to 42, 52, 64, 64, 65, 10 69, 81 to 96, 81, 26, 44, 67, 169, 81 to 96, 98, 10, 96, 98, 201 to 213, 230 to 232, 237, 238 206 1033 A917 Analog source selection (6ch) 207 208 1033 A917 Analog source selection (6ch) <th></th>		
Image: Note of the selection in th		
International state Internate International state <t< th=""><th></th></t<>		
International state Internate International state <t< th=""><th></th></t<>		
International state 1 to 8 1 4 1024 A903 Number of analog channels 1 to 8 1 4 1024 A904 Sampling auto start 0, 1 1 0 1025 A905 Trigger mode selection 0 to 4 1 0 1026 A906 Number of sampling before trigger 0 to 100% 1% 90% 1027 A910 Analog source selection (1ch) 10 10 201 202 1028 A911 Analog source selection (3ch) 1 to 3, 5 to 14, 17, 18, 20, 23, 24, 34, 40 to 42, 52 to 54, 61, 62, 64, 61, 61, 61, 72, 73, 238 206 1032 A915		
International state 0, 1 1 0 1024 A904 Sampling auto start 0, 1 1 0 1025 A905 Trigger mode selection 0 to 4 1 0 1026 A906 Number of sampling before trigger 0 to 100% 1% 90% 1027 A910 Analog source selection (1ch) 1028 A911 Analog source selection (2ch) 1003 1029 A912 Analog source selection (2ch) 20.2 203 1030 A913 Analog source selection (3ch) 1 to 3, 5 to 14, 17, 18, 20, 23, 24, 34, 40 to 42, 52 to 54, 61, 62, 64, 67 to 69, 81 to 96, 98, 201 to 213, 230 to 232, 206 206 207 1031 A916 Analog source selection (7ch) 208 206 207 1033 A916 Analog source selection (7ch) 208 208 208 1035 A918 Analog trigger channel 1 to 8 1 1 1036 A919 Analog trigger channel 0.1 1000		
Interface Interface <thinterface< th=""> <thinterface< th=""> <thi< th=""><th></th></thi<></thinterface<></thinterface<>		
Image: Note of the second section (1ch) Image: Note of the second section (1ch) Image: Note of the second		
International control of the		
Image: Second Condition (2 ch) Interpret (2 ch) <thinte< th=""><th></th></thinte<>		
Image: Note of the image: No		
Image: Section of the sectio		
Image: Second		
Interfact Appla Analog source selection (5ch) 67 to 69, 81 to 99, 98, 201 to 213, 230 to 232, 201 to 213, 230 to 232, 237, 238 205 1032 Ap15 Analog source selection (6ch) 237, 238 206 207 1033 Ap16 Analog source selection (7ch) 208 208 208 1034 Ap17 Analog source selection (8ch) 1 to 8 1 1 1035 Ap18 Analog trigger channel 1 to 8 1 1 1036 Ap19 Analog trigger operation selection 0, 1 1 0 1037 Ap20 Analog trigger level 600 to 1400 1 1000 1038 Ap30 Digital source selection (2ch) 1 2 2 1040 Ap32 Digital source selection (3ch) 1 4 2 1041 Ap33 Digital source selection (5ch) 1 5 6 1043 Ap35 Digital source selection (6ch) 6 6		
1032A915Analog source selection (6ch)237, 2382061033A916Analog source selection (7ch)2081034A917Analog source selection (8ch)2081035A918Analog trigger channel1 to 8111036A919Analog trigger operation selection0, 1101037A920Analog trigger level600 to 1400110001038A930Digital source selection (2ch)1100011041A933Digital source selection (4ch)125511043A935Digital source selection (6ch)15		
1036 A919 Analog trigger operation selection 0, 1 1 0 1037 A920 Analog trigger level 600 to 1400 1 1000 1038 A930 Digital source selection (1ch) 1 1000 1 1000 1039 A931 Digital source selection (2ch) 1 2 1 2 1040 A932 Digital source selection (3ch) 1 4 3 1041 A933 Digital source selection (5ch) 1 5 6 1043 A935 Digital source selection (6ch) 6 6 6		
1036 A919 Analog trigger operation selection 0, 1 1 0 1037 A920 Analog trigger level 600 to 1400 1 1000 1038 A930 Digital source selection (1ch) 1 1000 1 1000 1039 A931 Digital source selection (2ch) 1 2 1 2 1040 A932 Digital source selection (3ch) 1 4 3 1041 A933 Digital source selection (5ch) 1 5 6 1043 A935 Digital source selection (6ch) 6 6 6		
1036 A919 Analog trigger operation selection 0, 1 1 0 1037 A920 Analog trigger level 600 to 1400 1 1000 1038 A930 Digital source selection (1ch) 1 1000 1 1000 1039 A931 Digital source selection (2ch) 1 2 1 2 1040 A932 Digital source selection (3ch) 1 4 3 1041 A933 Digital source selection (5ch) 1 5 6 1043 A935 Digital source selection (6ch) 6 6 6		
1037 A920 Analog trigger level 600 to 1400 1 1000 1038 A930 Digital source selection (1ch) 1 1000 1 1000 1039 A931 Digital source selection (2ch) 1 2 1 2 1040 A932 Digital source selection (3ch) 1 4 3 1041 A933 Digital source selection (4ch) 1 1 5 1042 A934 Digital source selection (5ch) 1 5 6 1043 A935 Digital source selection (6ch) 6 6		
1038A930Digital source selection (1ch)11039A931Digital source selection (2ch)21040A932Digital source selection (3ch)31041A933Digital source selection (4ch)41042A934Digital source selection (5ch)51043A935Digital source selection (6ch)6		
1039A931Digital source selection (2ch)21040A932Digital source selection (3ch)31041A933Digital source selection (4ch)41042A934Digital source selection (5ch)51043A935Digital source selection (6ch)6		
1040A932Digital source selection (3ch)31041A933Digital source selection (4ch)41042A934Digital source selection (5ch)51043A935Digital source selection (6ch)6		
1041A933Digital source selection (4ch)1 to 25541042A934Digital source selection (5ch)51043A935Digital source selection (6ch)6		
1042A934Digital source selection (5ch)1 to 25511043A935Digital source selection (6ch)6		
1042 A934 Digital source selection (5ch) 5 1043 A935 Digital source selection (6ch) 6		
1044 A936 Digital source selection (7ch) 7		
1045 A937 Digital source selection (8ch) 8		
1046 A938 Digital trigger channel 1 to 8 1 1		
1047 A939 Digital trigger operation selection 0, 1 1 0		
- 1048 E106 Display-off waiting time 0 to 60 min 1 min 0 min		
- 1049 E110 USB host reset 0, 1 1 0		
b 5 1106 M050 Torque monitor filter 0 to 5 s, 9999 0.01 s 9999		
bit 1106 M050 lordue monitor filter 0 to 5 s, 9999 0.01 s 9999 1107 M051 Running speed monitor filter 0 to 5 s, 9999 0.01 s 9999 1108 M052 Excitation current monitor filter 0 to 5 s, 9999 0.01 s 9999		
Ž 1108 M052 Excitation current monitor filter 0 to 5 s, 9999 0.01 s 9999		

X

F800

		Pr.			Minimum	Initial	value	Customer
Function	Pr.	group	Name	Setting range	setting increments	FM	СА	setting
	1132	A626	Pre-charge change increment amount	0 to 100%, 9999	0.01%	9999		Customer
	1133	A666	Second pre-charge change increment amount	0 to 100%, 9999	0.01%	9999		
	1136	A670	Second PID display bias coefficient	0 to 500, 9999	0.01	9999		
	1137	A671	Second PID display bias analog value	0 to 300%	0.1%	20%		
	1138	A672	Second PID display gain coefficient	0 to 500, 9999	0.01	9999		
5	1139	A673	Second PID display gain analog value	0 to 300%	0.1%	100%		
	1140	A664	Second PID set point/deviation input selection	1 to 5	1	2		
ontro	1141	A665	Second PID measured value input selection	1 to 5, 101 to 105	1	3		
PID control	1142	A640	Second PID unit selection	0 to 43, 9999	1	9999		
Ē	1143	A641	Second PID upper limit	0 to 100%, 9999	0.1%	9999		
	1144	A642	Second PID lower limit	0 to 100%, 9999	0.1%	9999		
	1145	A643	Second PID deviation limit	0 to 100%, 9999	0.1%	9999		
	1146	A644	Second PID signal operation selection	0 to 3, 10 to 13	1	0		
	1147	A661	Second output interruption detection time	0 to 3600 s, 9999	0.1 s	1 s		
	1148	A662	Second output interruption detection level	0 to 590 Hz	0.01 Hz	0 Hz		
	1149	A663	Second output interruption cancel level	900 to 1100%	0.1%	1000%		
, on	1150	A810						
PLC function	to	to	PLC function user parameters 1 to 50	0 to 65535	1	0		
۲.	1199	A859			1.			-
	1211	A690	PID gain tuning timeout time	1 to 9999 s	1 s	100 s		
	1212	A691	Step manipulated amount	900 to 1100%	0.1%	1000%		
5	1213	A692	Step response sampling cycle	0.01 to 600 s	0.01 s	1 s		
PID gain tuning	1214	A693	Timeout time after the maximum slope	1 to 9999 s	1 s	10 s		-
ain tu	1215	A694	Limit cycle output upper limit	900 to 1100%	0.1%	1100%		-
ğ	1216	A695	Limit cycle output lower limit	900 to 1100%	0.1%	1000%		
<u>م</u>	1217	A696	Limit cycle hysteresis	0.1 to 10% 0, 100 to 102, 111, 112,	0.1%	1%		-
	1218	A697	PID gain tuning setting	121, 122, 200 to 202, 211, 212, 221, 222	1	0		
	1219	A698	PID gain tuning start/status	(0), 1, 8, (9, 90 to 96)	1	0		
	1300	N500						
	to	to						
-	1343, 1350	N543, N550	Communication option parameters. For details, refer to the Instruction Manual of the o	ption.				
	to	to		··				
	1359	N559						

×

LVS/Cables Precautions Motors Compatibility Warranty Inquiry

1		_			Minimum	Initial value	0
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM CA	Customer setting
	1361	A440	Detection time for PID output hold	0 to 900 s	0.1 s	5 s	
	1362	A441	PID output hold range	0 to 50%, 9999	0.1%	9999	
	1363	A447	PID priming time	0 to 360 s, 9999	0.1 s	9999	
	1364	A448	Stirring time during sleep	0 to 3600 s	0.1 s	15 s	
	1365	A449	Stirring interval time	0 to 1000 h	0.1 h	0 h	
	1366	A627	Sleep boost level	0 to 100%, 9999	0.01%	9999	
	1367	A628	Sleep boost waiting time	0 to 360 s	0.1 s	0 s	
s	1368	A629	Output interruption cancel time	0 to 360 s	0.1 s	0 s	
ctio	1369	A446	Check valve closing completion frequency	0 to 120 Hz, 9999	0.01 Hz	9999	
d fun	1370	A442	Detection time for PID limiting operation	0 to 900 s	0.1 s	0 s	
ncec	1371	A443	PID upper/lower limit pre-warning level range	0 to 50%, 9999	0.1%	9999	
enha	1372	A444	PID measured value control set point change amount	0 to 50%	0.01%	5%	
PID control enhanced functions	1373	A445	PID measured value control set point change rate	0 to 100%	0.01%	0%	
PID co	1374	A450	Auxiliary pressure pump operation starting level	900 to 1100%	0.1%	1000%	
_	1375	A451	Auxiliary pressure pump operation stopping level	900 to 1100%	0.1%	1000%	
	1376	A414	Auxiliary motor stopping level	0 to 100%, 9999	0.1%	9999	
	1377	A452	PID input pressure selection	1 to 3, 9999	1	9999	
	1378	A453	PID input pressure warning level	0 to 100%	0.1%	20%	
	1379	A454	PID input pressure fault level	0 to 100%, 9999	0.1%	9999	
	1380	A455	PID input pressure warning set point change amount	0 to 100%	0.01%	5%	
	1381	A456	PID input pressure fault operation selection	0, 1	1	0	
	1460	A683	PID multistage set point 1	0 to 100%, 9999	0.01%	9999	
5	1461	A684	PID multistage set point 2	0 to 100%, 9999	0.01%	9999	
nin	1462	A685	PID multistage set point 3	0 to 100%, 9999	0.01%	9999	
PID gain tuning	1463	A686	PID multistage set point 4	0 to 100%, 9999	0.01%	9999	
ID g:	1464	A687	PID multistage set point 5	0 to 100%, 9999	0.01%	9999	
٩.	1465	A688	PID multistage set point 6	0 to 100%, 9999	0.01%	9999	
	1466	A689	PID multistage set point 7	0 to 100%, 9999	0.01%	9999	
	1469	A420	Number of cleaning times monitor	0 to 255	1	0	
	1470	A421	Number of cleaning times setting	0 to 255	1	0	
	1471	A422	Cleaning trigger selection	0 to 15	1	0	
Cleaning	1472	A423	Cleaning reverse rotation frequency	0 to 590 Hz	0.01 Hz	30 Hz	
	1473	A424	Cleaning reverse rotation operation time	0 to 3600 s	0.1 s	5 s	
	1474	A425	Cleaning forward rotation frequency	0 to 590 Hz, 9999	0.01 Hz	9999	
ö	1475	A426	Cleaning forward rotation operation time	0 to 3600 s, 9999	0.1 s	9999	
	1476	A427	Cleaning stop time	0 to 3600 s	0.1 s	5 s	
	1477	A428	Cleaning acceleration time	0 to 3600 s, 9999	0.1 s	9999	
	1478	A429	Cleaning deceleration time	0 to 3600 s, 9999	0.1 s	9999	
	1479	A430	Cleaning time trigger	0 to 6000 h	0.1 h	0 h	

		Pr.			Minimum	Initia	value	Customer
Function	Pr.	group	Name	Setting range	setting increments	FM	CA	setting
	1480	H520	Load characteristics measurement mode	0, 1 (2 to 5, 81 to 85)	1	0		
	1481	H521	Load characteristics load reference 1	0 to 400%, 8888, 9999	0.1%	9999		
u.	1482	H522	Load characteristics load reference 2	0 to 400%, 8888, 9999	0.1%	9999		
ectic	1483	H523	Load characteristics load reference 3	0 to 400%, 8888, 9999	0.1%	9999		
t det	1484	H524	Load characteristics load reference 4	0 to 400%, 8888, 9999	0.1%	9999		
faul	1485	H525	Load characteristics load reference 5	0 to 400%, 8888, 9999	0.1%	9999		
stics	1486	H526	Load characteristics maximum frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
Load characteristics fault detection	1487	H527	Load characteristics minimum frequency	0 to 590 Hz	0.01 Hz	6 Hz		
arac	1488	H531	Upper limit warning detection width	0 to 400%, 9999	0.1%	20%		
ld ch	1489	H532	Lower limit warning detection width	0 to 400%, 9999	0.1%	20%		
Loa	1490	H533	Upper limit fault detection width	0 to 400%, 9999	0.1%	9999		
	1491	H534	Lower limit fault detection width	0 to 400%, 9999	0.1%	9999		
	1492	H535	Load status detection signal delay time / load reference measurement waiting time	0 to 60 s	0.1 s	1 s		
ers	Pr.C	LR	Parameter clear	(0), 1	1	0		
Clear parameters	ALL	CL	All parameter clear	(0), 1	1	0		
par	Err	CL	Fault history clear	(0), 1	1	0		
_	Pr.C		Parameter copy	(0), 1 to 3	1	0		
_	Pr.C		Initial value change list	-	1	0		
—	IP		IPM initialization	0, 12	1	0		
—	AU	-	Automatic parameter setting	-	-	-		
-	Pr.	MD	Group parameter setting	(0), 1, 2	1	0		

*1

Differ according to capacities. 6%: FR-F820-00046(0.75K), FR-F840-00023(0.75K)

3%: FR-F820-00071(1.5K) to FR-F820-00167(3.7K), FR-F840-00038(1.5K) to FR-F840-00083(3.7K)
 3%: FR-F820-00250(5.5K), FR-F820-00340(7.5K), FR-F840-00126(5.5K), FR-F840-00170(7.5K)
 2%: FR-F820-00490(11K) to FR-F820-01540(37K), FR-F840-00250(11K) to FR-F840-00770(37K)

2%: FR-F820-000490(11K) to FR-F820-01540(37K), FR-F840-00250(11K) to FR-F840-00170(37K)
 1.5%: FR-F820-01870(45K), FR-F820-02330(55K), FR-F840-00930(45K), FR-F840-01160(55K)
 1%: FR-F820-03160(75K) or higher, FR-F840-01800(75K) or higher
 The setting range or initial value for the FR-F820-02330(55K) or lower and FR-F840-01160(55K) or lower.
 The setting range or initial value for the FR-F820-03160(75K) or higher and FR-F840-01800(75K) or higher.
 The initial value for the FR-F820-0340(7.5K) or lower and FR-F840-0170(7.5K) or lower.
 The initial value for the FR-F820-00340(7.5K) or lower and FR-F840-0170(7.5K) or lower.
 The initial value for the FR-F820-00490(11K) or higher and FR-F840-00250(11K) or higher.
 Differ according to canacities

*2

*3

*4 *5

*6 Differ according to capacities.

4%: FR-F820-00340(7.5K) or lower, FR-F840-00170(7.5K) or lower 2%: FR-F820-00490(11K) to FR-F820-02330(55K), FR-F840-00250(11K) to FR-F840-01160(55K)

1%: FR-F820-03160(75K) or higher, FR-F840-01800(75K) or higher

- The value for the 200 V class. The value for the 400 V class. *7
- *8

*9 The parameter number in parentheses is the one for use with the LCD operation panel and the parameter unit.

The setting range or initial value for the standard model. The setting range or initial value for the separated converter type. The setting is available for the standard model only. *10 *11

*12

*13 The setting is available only with the 400 V class.

Warranty

Parameter List

Functions Protective

Options

LVS/Cables

Precautions

Motors

Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be performed from the operation panel (FR-DU08).

Function	tion Pr. Pr. Name		Setting range	Minimum setting increments	Initial value	Customer setting	
—	30	E300	Reset selection during power supply to 0, 100		1	0	
Automatic restart	57	A702	Restart selection	0, 9999	1	9999	
_	65	H300	Retry selection	0 to 4	1	0	
Z	67	H301	Number of retries at fault occurrence	0 to 10, 101 to 110	1	0	
Retry	68	H302	Retry waiting time	0.1 to 600 s	0.1 s	1 s	
Ľ	69	H303	Retry count display erase	0	1	0	
		—	Reset selection/disconnected PU detection/ reset limit	14 to 17, 114 to 117		14	
_	75	E100	Reset selection		1		1
	10	E101	Disconnected PU detection	0, 1		0	
		E107	Reset limit	-			
_	77	E400	Parameter write selection	1, 2	1	2	
Ę	117	N020	PU communication station number	0 to 31	1	0	
atio	118	N021	PU communication speed	48, 96, 192, 384, 576, 768, 1152	1	192	
PU connector communication		_	PU communication stop bit length / data length	0, 10		1	
Ĕ	119 N022		PU communication data length	0, 1	1	0	-
mo:		N023	PU communication stop bit length	0, 1		1	-
or o	120	N024	PU communication parity check	0 to 2	1	2	-
ecto	121	N025	Number of PU communication retries			1	
ů –	122	N026	PU communication check time interval	0, 0.1 to 999.8 s, 9999	1 0.1 s	9999	
8	123	N027	PU communication waiting time setting	0 to 150 ms, 9999	1 ms	9999	
PU	124	N028	PU communication CR/LF selection	0 to 2	1	1	
_	161	E200	Key lock operation selection	0, 10	1	0	
-	168 169	E000 E080 E001 E081	Parameter for manufacturer setting.				
Cumulative monitor clear	170	M020	Watt-hour meter clear	0, 10, 9999	1	9999	
inal n ent	178	T700	RDI terminal function selection		1	9999	
Input terminal function assignment	187	T709	OH terminal function selection	7, 62, 9999	1	7	
Inpu fi ass	189	T711	RES terminal function selection		1	62	
¥	190	M400	RDB terminal function selection		1	111	
inal	191	M401	RDA terminal function selection		1	11	
Output terminal function assignment	192	M402	IPF terminal function selection	2, 8, 11, 17, 25, 26, 64, 68, 90, 94, 95, 98, 99, 102, 108, 111, 125, 108, 164, 165, 109, 104, 105, 109, 109, 109, 109, 109, 109, 109, 109	1	2	<u> </u>
put t on as	193	M403	RSO terminal function selection	126, 164, 168, 190, 194, 195, 198, 199, 206, 207, 209, 210, 214, 306, 307, 309, 310, 9999	1	209	
Out	194	M404	FAN terminal function selection		1	25	
195 M405 ABC1 terminal function selection		M405	ABC1 terminal function selection		1	99	
			1	0 to 2	1	1	1

×

Function	Pr.	Pr. Name Setting range		Minimum setting increments	Initial value	Customer setting	
ck	255	E700	Life alarm status display	(0 to 15)	1	0	
		E701	Inrush current limit circuit life display	(0 to 100%)	1%	100%	
		(0 to 100%)	1%	100%			
-	261	A730	Power failure stop selection	0, 1, 2, 21, 22	1	0	
_	268	M022	Monitor decimal digits selection	0, 1, 9999	1	9999	
_	269	E023	Parameter for manufacturer setting. Do not set	et.			
_	290	M044	Monitor negative output selection	0, 2, 4, 6	1	0	
		0 to 3, 5, 6, 100 to 103, 105, 106, 9999	1	9999			
Password function	297	E411	Password lock/unlock	(0 to 5), 1000 to 9998, 9999	1	9999	
	331	N030	RS-485 communication station number	0, 31 (0, 247)	1	0	
332 N031 RS-485 communication speed 3, 76		3, 6, 12, 24, 48, 96, 192, 384, 576, 768, 1152	1	96			
Ę		—	RS-485 communication stop bit length / data length	0, 1, 10, 11	1	1	
atio	333	N032	RS-485 communication data length	0, 1	1	0	1
nic		N033	RS-485 communication stop bit	0, 1	1	1	1
RS-485 communication	334	N034	length RS-485 communication parity check	0 to 2	1	2	
2 CO	335	N035	selection RS-485 communication retry count	0 to 10, 9999	1	1	
485	336	N036	RS-485 communication check time interval	0 to 999.8 s, 9999	0.1 s	0 s	
SS-	337	N037	RS-485 communication waiting time setting	0 to 150 ms, 9999	1 ms	9999	
-			0 to 2	1	1		
	342	N001	Communication EEPROM write selection	0, 1	1	0	
	343	N080	Communication error count	_	1	0	
ance	503	E710	Maintenance timer 1	0 (1 to 9998)	1	0	
503 Waintenance 504		E711	Maintenance timer 1 warning output set time	0 to 9998, 9999	1	9999	
_	539	N002	MODBUS RTU communication check time interval	0 to 999.8 s, 9999	0.1 s	9999	
Communication			Protocol selection	0, 1	1	0	
—	563	M021	Energization time carrying-over times	(0 to 65535)	1	0	
-	598	H102	Undervoltage level	350 to 430 V, 9999	0.1 V	9999	
—	663	M060	Control circuit temperature signal output level	0 to 100°C	1°C	0°C	
е	686	E712	Maintenance timer 2	0 (1 to 9998)	1	0	
Jan	687	E713	Maintenance timer 2 warning output set time	0 to 9998, 9999	1	9999	
Maintenance	688	E714	Maintenance timer 3	0 (1 to 9998)	1	0	
Mair	689	E715	Maintenance timer 3 warning output set time	0 to 9998, 9999	1	9999	
	774	M101	Operation panel monitor selection 1		1	9999	
function	775	M102	Operation panel monitor selection 2	2, 8, 13, 20, 25, 43, 44, 55, 62, 98,	1	9999	
function	776	M102		9999	1	9999	
	110	WI103	Operation panel monitor selection 3			2222	<u> </u>
Protective Functions	872	H201	Input phase loss protection selection	0, 1	1	0	

×

F800

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Customer setting
-	876	T723	OH input selection	0 to 2	1	0	
888 Parameters 688 Barameters		E420	Free parameter 1	0 to 9999	1	9999	
Fr paran	889	E421	Free parameter 2	0 to 9999	1	9999	
Energy monitor 881 W053		M023	Cumulative power monitor digit shifted times	0 to 4, 9999	1	9999	
Ы	990	E104	PU buzzer control	0, 1	1	1	
Monitor function	992	M104	Operation panel setting dial push monitor selection	2, 8, 13, 20, 25, 43, 44, 55, 62, 98	1	8	
_	997	H103	Fault initiation	0 to 255, 9999	1	9999	
× u	1006	E020	Clock (year)	2000 to 2099	1	2000	
Clock function	1007	E021	Clock (month, day)	1/1 to 12/31	1	101	
far c	1008	E022	Clock (hour, minute)	0:00 to 23:59	1	0	
-	1048	E106	Display-off waiting time	0 to 60 min	1 min	0 min	
ers	Pr.	CLR	Parameter clear	(0), 1	1	0	
Clear parameters	AL	L.CL	All parameter clear	(0), 1	1	0	
para	Er	r.CL	Fault history clear	(0), 1	1	0	
	Pr.	СРҮ	Parameter copy	(0), 1 to 3	1	0	
_	Pr.	CHG	Initial value change list	-	1	0	
_	Pr	.MD	Group parameter setting	(0), 1, 2	1	0	

*

When the inverter detects a fault, depending on the nature of the fault, the operation panel displays an error message or warning, or a protective function activates to trip the inverter.

	Name	Description	Operation panel indication
	Faults history	The operation panel stores the fault indications which appears when a protective function is activated to display the fault record for the past eight faults.	E
61	Operation panel lock	Appears when operation was tried during operation panel lock.	HOLd
ge *2	Password locked	Appears when a password restricted parameter is read/written.	LOCa
Error message	Parameter write error	Appears when an error occurred during parameter writing.	Er 1toEr4 Er8
Erro	Copy operation error	Appears when an error occurred during parameter copying.	rE torE4 rE6torE8
	Error	Appears when the RES signal is on or the PU and inverter can not make normal communication.	Enr.
	Stall prevention (overcurrent)	Appears during overcurrent stall prevention.	OL
	Stall prevention (overvoltage)	Appears during overvoltage stall prevention. Appears while the regeneration avoidance function is activated.	oL
	Electronic thermal relay function pre-alarm	Appears when the electronic thermal O/L relay has reached 85% of the specified value.	ГH
	PU stop	Appears if STOP is pressed in an operation mode other than the PU operation mode.	ΡS
ng +3	Parameter copy	Appears when parameter copy is performed between inverters FR-F820-02330(55K) or lower, FR- F840-01160(55K) or lower, FR-F820-03160(75K) or higher and FR-F840-01800(75K) or higher	EP
Warning	Safety stop	Appears when safety stop function is activated (during output shutoff).	58
5	Maintenance signal output 1 to 3 +7	Appears when the inverter's cumulative energization time reaches or exceeds the parameter set value.	
	USB host error	Appears when an excessive current flows into the USB A connector.	ЦF
	24 V external power supply operation	Flickers when the main circuit power supply is off and the 24 V external power supply is being input.	EĽ
	Load fault warning •7 Appears when the present load status deviates from the upper and lower limit warning detection width.		LdF
	Emergency drive in operation	Appears during emergency drive operation. (Standard models only)	Ed
Alarm +4	Fan alarm	Appears when the cooling fan remains stopped when operation is required or when the speed has decreased.	FN
	Overcurrent trip during acceleration	Appears when an overcurrent occurred during acceleration.	E. OC I
	Overcurrent trip during constant speed	Appears when an overcurrent occurred during constant speed operation.	E. 002
	Overcurrent trip during deceleration or stop	Appears when an overcurrent occurred during deceleration and at a stop.	E. 0C 3
	Regenerative overvoltage trip during acceleration	Appears when an overvoltage occurred during acceleration.	E. 01/ 1
	Regenerative overvoltage trip during constant speed	Appears when an overvoltage occurred during constant speed operation.	E. 0V2
	Regenerative overvoltage trip during deceleration or stop	Appears when an overvoltage occurred during deceleration and at a stop.	E. 01/ 3
	Inverter overload trip (electronic thermal relay function) +1	Appears when the electronic thermal relay function for inverter element protection was activated.	Е. ГНГ
	Motor overload trip (electronic thermal relay function) +1	Appears when the electronic thermal relay function for motor protection was activated.	Е. ГНМ
lt *5	Heatsink overheat	Appears when the heatsink overheated.	E. FIN
Fault	Instantaneous power failure	Appears when an instantaneous power failure occurred at an input power supply. (Standard models only)	E. I PF
	Undervoltage	Appears when the main circuit DC voltage became low. (Standard models only)	E. LIKF
	Input phase loss *7	Appears if one of the three phases on the inverter input side opened. (Standard models only)	E. ILF
	Stall prevention stop	Appears 3 s after the output frequency is reduced to the reference value by the stall prevention (torque limit) operation.	E. OLF
	Loss of synchronism detection	The inverter trips when the motor operation is not synchronized. (This function is only available under PM sensorless vector control.)	E. SOF
	Upper limit fault detection *7	Appears when the present load status exceeds the upper limit warning detection width.	E. LUP
	Lower limit fault detection *7	Appears when the present load status falls below the lower limit warning detection width.	E. Lan
	Output side earth (ground) fault overcurrent	Appears when an earth (ground) fault occurred on the Inverter's output side.	E. GF
	Output phase loss	Appears if one of the three phases on the inverter output side opened.	E. LF
	External thermal relay operation +6	Appears when the external thermal relay connected to the terminal OH is activated.	E. OHF

Protective Functions

eter Lis

Features

PLC Function FR Configurator2

> Connectior Example

Standard Specs

Outline Dimensions

Diagrams Terminal Specs

ation Panel

LVS/Cables

Precautions

Motors Compatibility

Warranty Inquiry

	Name	Description	Operation panel indication
	PTC thermistor operation Option fault	The inverter trips if resistance of the PTC thermistor connected between the terminal 2 and terminal 10 has reached the Pr.561 PTC thermistor protection level setting or higher. Appears when torque command by the plug-in option is selected using Pr. 804 when no plug-in option is mounted or an AC power supply is connected to the R/L1, S/L2, T/L3 when the high power factor	<u>Е.</u> РГ <u>С</u> Е. ОРГ
ŀ	Communication option	converter and power regeneration common converter connection setting (Pr.30 =2) is selected. Appears when a communication line error occurs in the communication option.	E. OP I
	fault Parameter storage device	Appears when operation of the element where parameters stored became abnormal. (control board)	E PE
	fault PU disconnection	Appears when a communication error between the PU and inverter occurred, the communication interval exceeded the permissible time during the RS-485 communication with the PU connecter, or communication errors exceeded the number of retries during the RS-485 communication.	E. PUE
	Retry count excess *7	Appears when the operation was not restarted within the set number of retries.	E. REF
	Parameter storage device fault	Appears when operation of the element where parameters stored became abnormal. (main circuit board)	E. PEZ
	CPU fault	Appears during the CPU and peripheral circuit errors occurred.	E. CPU E. 5% E. 7
	Operation panel power supply short circuit/RS- 485 terminals power supply short circuit	Appears when the RS-485 terminal power supply or operation panel power supply was shorted.	Е. СГЕ
	24 VDC power fault	When the 24 VDC power output via the terminal PC is shorted, or when the external 24 VDC power supplied to the terminal +24 is not enough, this function shuts off the power output.	E. <i>P2</i> 4
	Abnormal output current detection *7	Appears when the output current is out of the output current detection range set by parameters.	E. C.J.O
Fault +5	Inrush current limit circuit fault	Appears when the resistor of the inrush current limit circuit overheated. (Standard models only)	E. I OH
Fa	Communication fault (inverter)	Appears when a communication error occurred during the RS-485 communication with the RS-485 terminals.	E. SER
	Analog input fault	Appears when 30 mA or more is input or a voltage (7.5 V or more) is input with the terminal 2/4 set to current input.	E. ALE
	USB communication fault	Appears when USB communication error occurred.	E. US6
	Safety circuit fault	The inverter trips when a safety circuit fault occurs.	E. SAF
	Overspeed occurrence *7	Indicates that the motor speed has exceeded the overspeed setting level (Pr.374).	E. 05
	4 mA input fault +7	The inverter trips when the analog input current is 2 mA or less for the time set in Pr.778 4 mA input check filter.	E. LEI
	Pre-charge fault +7	The inverter trips when the pre-charge time exceeds Pr.764 Pre-charge time limit . The inverter trips when the measured value exceeds Pr.763 Pre-charge upper detection level during pre-charging.	Е. РСН
	PID signal fault +7	The inverter trips if the measured value exceeds the PID upper limit or PID lower limit parameter setting, or the absolute deviation value exceeds the PID deviation parameter setting during PID control.	E. Pld
	Option fault	The inverter trips when a contact fault is found between the inverter and the plug-in option, or when the communication option is not connected to the connector 1.	E. /to E. 3
	Internal circuit fault	Appears when an internal circuit error occurred.	<u>Е. БЕ</u> <u>Е. РБГ</u> Е. ІЭ
	User definition error by the PLC function	Appears when the values 16 to 20 are set in the device SD1214 with the program operation of the PLC function.	E. 16.0 E. 20

Resetting the inverter initializes the internal cumulative heat value of the electronic thermal O/L relay function. The error message shows an operational error. The inverter output is not shut off. Warnings are messages given before faults occur. The inverter output is not shut off. Alarm warn the operator of failures with output signals. The inverter output is not shut off. When faults occur, the protective functions are activated to shut off the inverter output and output the alarms. The external thermal operates only when the OH signal is set in **Pr.178 to Pr.189 (input terminal function selection)**. This protective function is not available in the initial status. *1 *2 *3 *4 *5 *6 *7

When the converter unit detects a fault, depending on the nature of the fault, the operation panel displays an error message or warning, or a protective function activates to trip the inverter.

	Name	Description	Operation panel indication
	Faults history	The operation panel stores the fault indications which appears when a protective function is activated to display the fault record for the past eight faults.	E
e *2	Operation panel lock	Appears when operation was tried during operation panel lock.	HOLd
Error message	Password locked	Appears when a password restricted parameter is read/written.	LOCa
or me	Parameter write error	Appears when an error occurred during parameter writing.	Er I
Err	Copy operation error	rE ltorE4	
	Error	Appears when the RES signal is on or the PU and converter unit can not make normal communication.	Err.
ĉ,	Electronic thermal relay function pre-alarm	Appears when the electronic thermal O/L relay has reached 85% of the specified value.	ΓH
Warning	Maintenance signal output 1 to 3 +7	Appears when the converter unit's cumulative energization time reaches or exceeds the parameter set value.	MF 1toMF 크
Wa	24 V external power supply operation	Flickers when the main circuit power supply is off and the 24 V external power supply is being input.	El⁄
Alarm *4	Fan alarm	Fan alarm Appears when the cooling fan remains stopped when operation is required or when the speed has decreased.	
	Overvoltage trip	Appears when the converter unit's internal main circuit DC voltage exceeds the specified value.	Ε. ΟΥΓ
	Converter overload trip (electronic thermal relay function) *1	Appears when the electronic thermal O/L relay of the converter unit diode module is activated.	Е. ГНС
	Heatsink overheat	Appears when the heatsink overheated.	E. FIN
	Instantaneous power failure	Appears when an instantaneous power failure occurred at an input power supply.	E. I PF
	Undervoltage	Appears when power supply voltage of the converter unit is set at a low level.	E. UKT
	Input phase loss *7	Appears if one of the three phases on the converter unit input side opened.	E. ILF
	External thermal relay operation +6	Appears when the external thermal relay connected to the terminal OH is activated.	Е. ОНГ
	Parameter storage device fault	Appears when operation of the element where parameters stored became abnormal. (control board)	E. PE
	PU disconnection	Appears when a communication error between the PU and inverter occurred, the communication interval exceeded the permissible time during the RS-485 communication with the PU connecter, or communication errors exceeded the number of retries during the RS-485 communication.	E. PUE
\$	Retry count excess +7	Appears when the operation was not restarted within the set number of retries.	E. REF
Fault	Parameter storage device fault	Appears when operation of the element where parameters stored became abnormal. (main circuit board)	E. PEZ
	CPU fault	Appears during the CPU and peripheral circuit errors occurred.	E. [PU E. 5₽ E. 7
	Operation panel power supply short circuit/RS- 485 terminals power supply short circuit	Appears when the RS-485 terminal power supply or operation panel power supply was shorted.	Е. СГЕ
	24 VDC power fault	When the 24 VDC power output via the terminal PC is shorted, or when the external 24 VDC power supplied to the terminal +24 is not enough, this function shuts off the power output.	E. P24
	Inrush current limit circuit fault	Appears when the resistor of the inrush current limit circuit overheated.	E. I OH
	Communication fault (inverter)	Appears when a communication error occurred during the RS-485 communication with the RS-485 terminals.	E. SER
	Internal circuit fault	Appears when an internal circuit error occurred.	<u>Е. РЬГ</u> Е. 13
	Option fault	The inverter trips if a plug-in option is disconnected while the converter unit power is ON.	E. 1

Resetting the converter unit initializes the internal cumulative heat value of the electronic thermal O/L relay function. *1

The error message shows an operational error. The inverter output is not shut off. Warnings are messages given before faults occur. The inverter output is not shut off. Alarm warn the operator of failures with output signals. The inverter output is not shut off.

*2 *3 *4 *5 *6 *7 When faults occur, the protective functions are activated to shut off the inverter output and output the alarms. The external thermal operates only when the OH signal is set in **Pr.178**, **Pr.180**, **Pr.187** or **Pr.189** (input terminal function selection). This protective function is not available in the initial status.

Featu

Option List

×

By fitting the following options to the inverter, the inverter is provided with more functions. Three plug-in options can be fitted at a time. (more than two same options and communication options can not be fitted)

		Name	Туре	Applications, Specifications, etc.	Applicable Inverter	
		16-bit digital input FR-A8AX		This input interface sets the high frequency accuracy of the inverter using an external BCD or binary digital signal. BCD code 3 digits (maximum 999) BCD code 4 digits (maximum 9999) Binary 12 bits (maximum FFFH) Binary 16 bits (maximum FFFFH)		
0				Output signals provided with the inverter as standard are selected to output from the open collector.		
Plug-in Type		Digital output Extension analog output	FR-A8AY	This option adds 2 different signals that can be monitored at the terminals AM0 and AM1, such as the output frequency, output voltage and output current. 20mADC or 10VDC meter can be connected.	Shared among all models	
PIU		Relay output	FR-A8AR	Output any three output signals available with the inverter as standard from the relay contact terminals.		
	uo	CC-Link communication	FR-A8NC			
	CC-Link/IE field network		FR-A8NCE	This option allows the inverter to be operated or monitored or the parameter setting to be changed from a computer or		
unuu		DeviceNet communication	FR-A8ND	programmable controller.		
	Com	PROFIBUS-DP communication	FR-A8NP			
Control terminal		Screw terminal block	FR-A8TR	The screw type control circuit terminal block enables wiring using round crimping terminals.	Shared among all models	
		Liquid crystal display operation panel	FR-LU08	Graphical operation panel with liquid crystal display $*2$		
	Parameter unit		FR-PU07	Interactive parameter unit with LCD display		
	Р	arameter unit with battery pack	FR-PU07BB(-L) *3	Enables parameter setting without supplying power to the inverter.		
	P	arameter unit connection cable	FR-CB20[]	Cable for connection of operation panel or parameter unit [] indicates a cable length. (1m, 3m, 5m)	Shared among all models	
ed		USB cable	MR-J3USBCBL3M Cable length: 3 m	Amplifier connector connector Mini B connector (5-pin) A connector		
Shar	0	peration panel connection connector	FR-ADP	Connector to connect the operation panel (FR-DU08) and connection cable.		
alone		ntrol circuit terminal block ercompatibility attachment	FR-A8TAT	An attachment for installing the control circuit terminal block of the FR-F700(P)/F500 series to that of the FR-F800 series	Shared among all models	
Stand-alone Shared	Panel through attachment		FR-A8CN	The inverter heatsink section can be protruded outside of the rear of the enclosure. For the enclosure cut dimensions, refer to page 30 .	FR-F820-00105(2.2K) to FR-F820-04750(110K), FR-F840-00023(0.75K) to FR-F840-03610(160K) According to capacities	
	Intercompatibility attachment				Attachment for replacing with the FR-F800 series using the installation holes of the FR-F700(P)/F500/A100E series.	According to capacities
		AC reactor DC reactor	FR-HAL FR-HEL	For harmonic current reduction and inverter input power factor improvement	According to capacities	
		Line noise filter	FR-BSF01 FR- BLF	For line noise reduction	Shared among all models	
	Line holse litter		FR- BLF			

	-	-	
	25.		

Features

FR Configurator2 **PLC** Function

> Connection Example

Standard Specs

Dimensions Outline

Terminal Specs Diagrams

Operation Panel

Operation Steps

Parameter List

Protective Functions

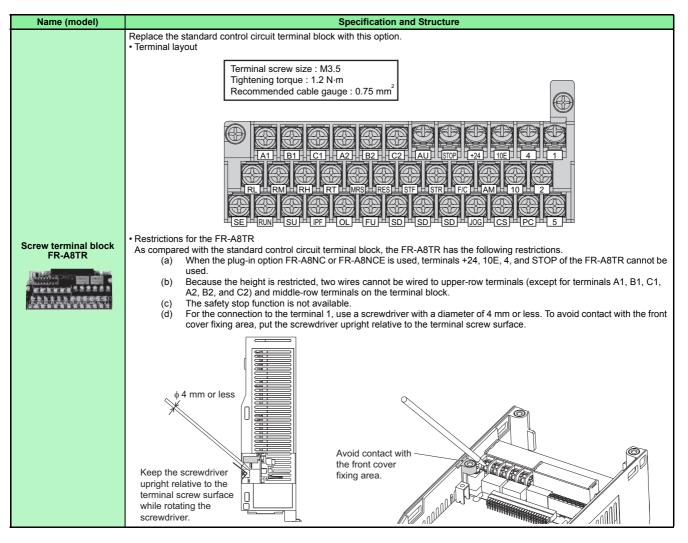
Options

LVS/Cables

18

	Name		Туре	Applications, Specifications, etc.	Applicable Inverter		
Brake unit		FR-BU2		According to capacities			
	Projetarumit				FR-BR	For increasing the braking capability of the inverter (for high- inertia load or negative load)	FR-F820-02330(55K) or lower, FR-F840-01160(55K) or lower
	Resis	stor unit	MT-BR5	Brake unit and resistor unit are used in combination	FR-F820-03160(75K) or higher, FR-F840-01800(75K) or higher		
ıared	Power regenera conve Stand-alone rea for the	erter ctor dedicated	FR-CV FR-CVL	Unit which can return motor-generated braking energy back to the power supply in common converter system	FR-F820-02330(55K) or lower, FR-F840-01160(55K) or lower		
alone Sł	Power regenera	tion converter	MT- RC	Energy saving type high performance brake unit which can regenerate the braking energy generated by the motor to the power supply.	FR-F840-01800(75K) or higher		
Stand-alone reactor dedicated for the FR-CV Power regeneration converter Power factor converter		FR-HC2	The high power factor converter switches the converter section on/off to reshape an input current waveform into a sine wave, greatly suppressing harmonics. (Used in combination with the standard accessory.)	According to capacities			
			FR-ASF		FR-F840-01160(55K) or lower		
	Surge voltage suppression filter		Surge voltage suppression filter		FR-BMF	Filter for suppressing surge voltage on motor	FR-F840-00126(5.5K) to FR-F840-00770(37K) According to capacities
		Reactor	MT- BSL (-HC)		FR-F820-03160(75K) or hiaher.		
	Sine wave filter	Capacitor	MT- BSC	Reduce the motor noise during inverter driving Use in combination with a reactor and a capacitor	FR-F840-01800(75K) or higher According to capacities		
oller	Manual co	ontroller	FR-AX	For independent operation. With frequency meter, frequency potentiometer and start switch.			
FR Series Manual Controller/Speed Controller	DC tach.	follower	FR-AL	For synchronous operation (1VA) by external signal (0 to 5V, 0 to 10V DC) $_{\ast 1}$			
eed C	Three spee	d selector	FR-AT	For three speed switching, among high, middle and low speed operation (1.5VA) \ast_1			
ler/Sp	Motorized s	beed setter	FR-FK	For remote operation. Allows operation to be controlled from several places (5VA) ${\scriptstyle\ast1}$			
ntroll	Ratio s	etter	FR-FH	For ratio operation. Allows ratios to be set to five inverters. (3VA) $_{*1}$			
l Co	Speed d	etector	FR-FP	For tracking operation by a pilot generator (PG) signal (2VA) *1			
anua	Master co	ontroller	FR-FG	Master controller (5VA) for parallel operation of multiple (maximum 35) inverters. *1			
ies M	Soft st	arter	FR-FC	For soft start and stop. Enables acceleration/deceleration in parallel operation (3VA) *1	Shared among all models		
R Ser	Deviation	detector	FR-FD	For continuous speed control operation. Used in combination with a deviation sensor or synchro (5VA) *1			
Freampillier		FR-FA	Used as an A/V converter or arithmetic amplifier (3VA) *1				
	Pilot ger	nerator	QVAH-10	For tracking operation. 70V/35VAC 500Hz (at 2500r/min)			
Deviation sensor			YVGC-500W-NS	For continuous speed control operation (mechanical deviation detection) Output 90VAC/90°			
ers	Frequency setting ورجعت ومرجع و مرجع ومرجع ومرجم ومرجع ومرجو ومرجع ومرجم ومرجع ومرجم ومرجع ومرجم ومرجع ومرجم ومرجع ومرج		WA2W 1kΩ	For frequency setting. Wire-wound 2W 1k Ω type B characteristic			
Others	Analog frequ (64mm ×		YM206NRI 1mA	Dedicated frequency meter (graduated to 130Hz). Moving-coil type DC ammeter			
	Calibration	resistor	RV24YN 10kΩ	For frequency meter calibration. Carbon film type B characteristic			
	Inverter setu (FR Config		SW1DND-FRC2-E	Supports an inverter startup to maintenance.			

Rated power consumption. The power supply specifications of the FR series manual controllers and speed controllers are 200VAC 50Hz, 200V/220VAC *1

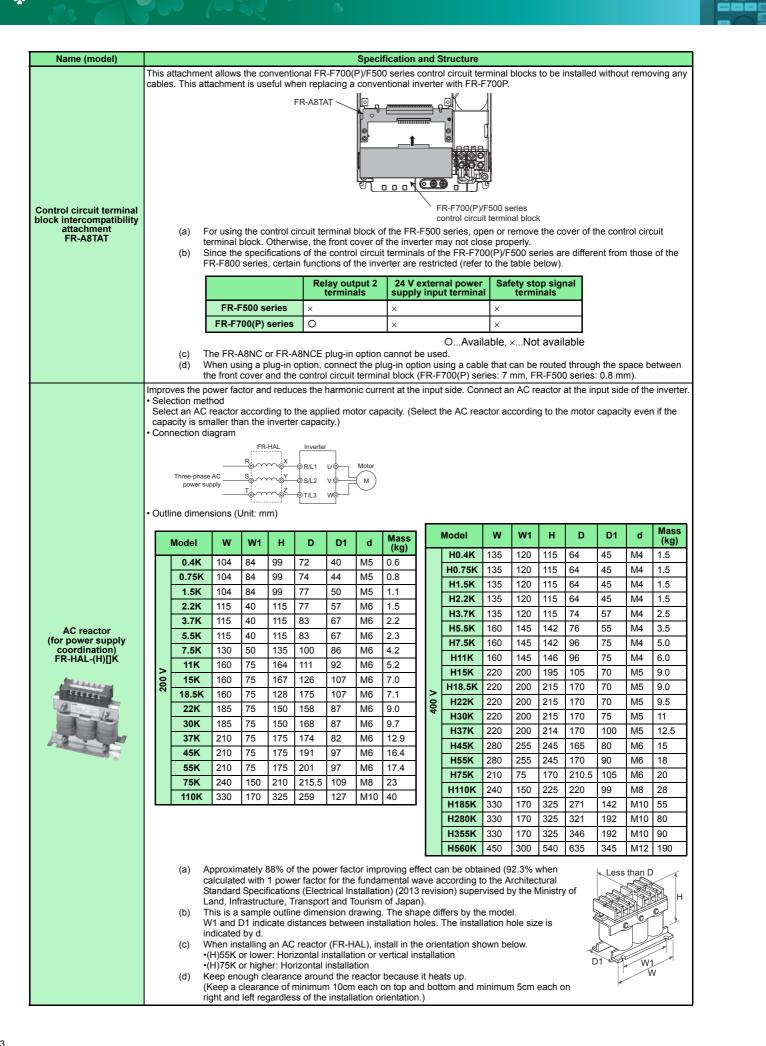

*2 *3

X

The battery (CR1216: a diameter of 12 mm, a hight of 16 mm) is not bundled. To use a parameter unit with battery pack (FR-PU07BB) outside Japan, order a "FR-PU07BB-L" (parameter unit type indicated on the package has L at the end). Since batteries may conflict with laws in countries to be used (new EU Directive on batteries and accumulators, etc.), batteries are not enclosed with an FR-PU07BB.

• Control terminal option

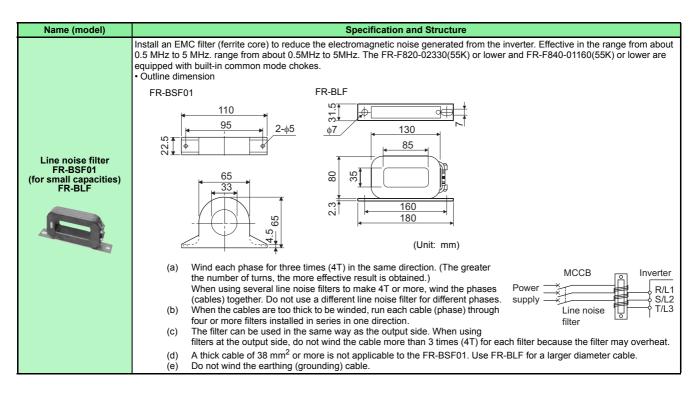
Stand-alone option


Name (model)		Specification and Structure					
	the heat gener The use of this 30).	ated in the inverter can be radia attachment requires more inst ure cut dimensions, refer to pag	ated to the rear of the enclosure, the allation area. For installation, refer to	an be placed on the rear of the enclosure. Since e enclosure can be downsized. o the drawing after attachment installation (page			
		Applic	able inverter	enclosure of			
	Model	FR-F820	FR-F840	FR-A8CN (Option)			
Panel through	FR-A8CN01	00105(2.2K), 00167(3.7K), 00250(5.5K)	00023(0.75K), 00038(1.5K), 00052(2.2K), 00083(3.7K), 00126(5.5K)				
attachment	FR-A8CN02	00340(7.5K), 00490(11K)	00170(7.5K), 00250(11K)	Inverter Cooling fan			
FR-A8CN[]	FR-A8CN03	00630(15K)	00310(15K), 00380(18.5K)				
	FR-A8CN04	00770(18.5K), 00930(22K), 01250(30K)	00470(22K), 00620(30K)	Heatsink			
	FR-A8CN05	01540(37K)	00770(37K)				
	FR-A8CN06	01870(45K), 02330(55K)	00930(45K), 01160(55K), 01800(75K)				
	FR-A8CN07	03160(75K)	—	╡ └ <u>└┙</u> — — — — — — — — — — — — —			
	FR-A8CN08	03800(90K), 04750(110K)	03250(132K), 03610(160K)	Cooling wind			
	FR-A8CN09	_	02160(90K), 02600(110K)	7			

وموه

me (model)	Specification and Structure Enables FR-F800 to be attached using the mounting holes made for the conventional EI												
	FR-	F70	0(P)/F500/A10	DE series inverte	er.					Maximum 15mm			
	This	s atta	achment is use	ful when replaci	ng a conventiona	l inverter with F	R-F800.			tor			
			T, FR-A5AT]					FR-AAT FR-A5AT					
	The	e inv	erter with this a	ttachment requir	res greater install	ation depth.		11(7)(6)(1					
										1			
	۰M	odel	s replaceable v	vith FR-F820									
							FR-F820	-					
				00046(0.75K)/ 00077(1.5K)	00105(2.2K) to 00250(5.5K)	00340(7.5K)/ 00490(11K)	00630(15K)	00770(18.5K) to 01250(30K)	01540(37K)	01870(45K) 02330(55K)			
			0.75K	FR-A5AT01	-								
			1.5K to 3.7K	FR-A5AT02	FR-A5AT02		—	_	_	—			
		ш	5.5K to 11K	_	FR-A5AT03	FR-A5AT03	—	—		_			
		FR-A120E	15K/18.5K	_		FR-AAT02	FR-AAT24	0	_	_			
		R-A	22K/30K	_	—	—	FR-A5AT04	FR-A5AT04	_	_			
		ш.	37K 45K				_	FR-AAT27	O FR-AAT23	0			
	Ϊţ		55K	_	_	_	_	_	—	FR-A5AT05			
	and capacity		0.75K	0	_		—	_	_	_			
	d ca		1.5K to 3.7K	FR-AAT21	0	—	—	—					
	ano		5.5K/7.5K	_	FR-AAT22	0	—	—	-	_			
	Conventional model	FR-F520	11K	_	FR-A5AT03	FR-A5AT03	— FR-AAT24	-	_	_			
	ñ	R-F	15K to 22K 30K	_	_	FR-AAT02	FR-AAT24 FR-A5AT04	O FR-A5AT04	_				
	nal	ш	37K	_	_	_	—	FR-AAT27	0	_			
	ntic		45K	_	_		—	—	FR-AAT23	0			
	nve		55K	_			—	—		FR-A5AT05			
	ပိ		0.75K/1.5K	0		—	—	—	-	_			
mpatibility		0	2.2K to 5.5K 7.5K/11K	FR-AAT21			-	—	_	_			
chment		20(F	15K	_	FR-AAT22 FR-A5AT03	FR-A5AT03	0	_	_				
R-AAT[] -A5AT[]		FR-F720(P)	18.5K to		11(7/0/1100	11070700		<u>^</u>					
-F8AT[]		FR	30K	_	_	_	FR-AAT24	0	_	_			
			37K 45K/55K	_	—	_	_	FR-AAT27	O FR-AAT23				
							—	—	FR-AAT23	0			
	• 101	odei	s replaceable v	Vith FR-F840			50.40			_			
				00023(0.75K) 00170(7.5K)/	FR-I	F840 00470(22K	W I	00930(45	C)/			
				to 00126(5.5k		00380(18.5K)			01160(55				
			0.75K to 3.7K		-	—			-				
		ш	5.5K to 11K 15K/18.5K	FR-A5AT03	FR-A5AT03 FR-AAT02	FR-AAT24	-		-				
	2	140	22K	_		FR-A5AT04	FR-A5AT04						
	acit	FR-A140E	30K	-	_		FR-AAT27	_	-	-			
	Conventional model and capacit	ш	37K/45K	—	<u> </u>	<u> </u>	_	FR-AAT23	0				
	o pu		55K	-	—	-	_	—	FR-A5AT05	5			
	ela		0.75K to 3.7K			-	-		-	_			
	pot	FR-F540	5.5K to 11K 15K to 22K	FR-AAT22	O FR-AAT02	FR-AAT24	0			_			
	al n	Ľ-	30K/37K	_	_	—	FR-AAT27	0	-				
	ion		45K/55K	-	_	-	—	FR-AAT23	0				
	rent		0.75K to 5.5K	0	—	<u> </u>	_	—					
	onv	E)	7.5K/11K	-	0	-	_	—	—				
	C	FR-F740(P)	15K/18.5K	FR-A5AT03	FR-A5AT03		-		—	_			
		R F	22K/30K 37K	-		FR-AAT24	O FR-AAT27	0	-	_			
		ш	45K/55K	_	1	_		FR-AAT23	0				
	0:	Rep	laceable withou	It the intercompa	atibility attachmer	nt			1-				
	FR	-A5A	\T[][], FR-AAT[]	[]: Replaceable v	with the intercom	patibility attachn	nent.						
		R-F8/		a used in realise	ing FR-F520L-75	K and ED EZOD	75K with ED	E020 02160/75K)				

Compatibility


Warranty Inquiry

FRAN

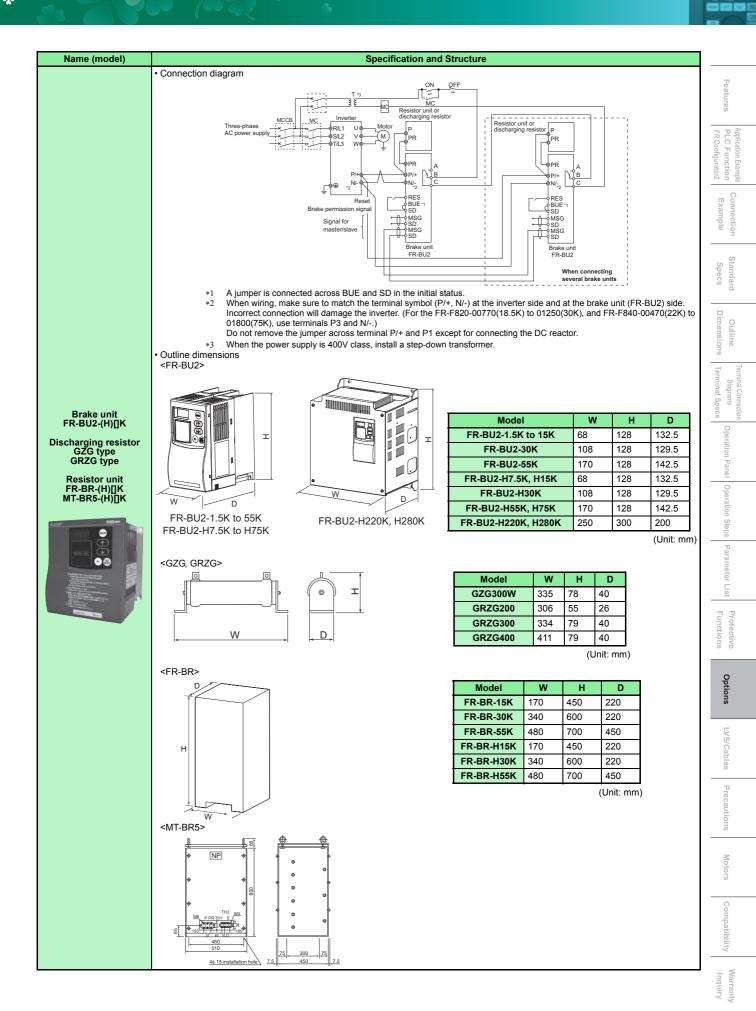
$ \frac{\operatorname{more}{\operatorname{rower}} \operatorname{floct} \operatorname{rad} \operatorname{rower} \operatorname{floct} \operatorname{rad} \operatorname{rower} $	Name (model)									Spe	cificatio	on an	nd S	tructure							
$ \frac{1}{100} 1$															E840-(11800	(75K) o	r hiaha	r		
$ \begin{array}{c} \text{Dc restrict} \\ \text{Dc restrict} \\ \text{Connect a DC reaction to the inverter terminals P and P for the PR-R520 C3305(k) or lower, the jumple across the left attached in power factor inprovement can be obtained. \\ \text{Dr RHADO P100(5K) or lower, the jumple across the left attached in power factor inprovement can be obtained. \\ \text{Is of attached, no power factor inprovement can be obtained. \\ \text{Is of attached, no power factor inprovement can be obtained. \\ \text{Inverter should be as shot as possible (5m or less): } \\ \text{Unified mension (Unit: mm)} \\ \text{Less fam D \\ \text{Verter should be as shot as possible (5m or less): }$		• 5	Selec	ction meth	nod	·					,	•					. ,			anacity	, is smaller
Creatory Outline dimension (Unit: mm) Image: State in the sector and the sector		t	han	the invert	er cap						acity. (O	CIECI	i ii a	corung t	ouren		apacity	evenn		арасну	15 51101101
$ \begin{array}{c} \label{eq:results} \end{tabular} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $		0	Conn	ect a DC	reacto									Ī	FR-HE	۱ ۲					
$ \begin{array}{c} \label{eq:results} \end{tabular} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $															။ ခု	@					
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{trend} \\ \mb$												00100001			<u> </u>	∬5			ould be		
$ \frac{1}{10000000000000000000000000000000000$		c	obtaiı	ned.)				•					[(0) P1		0 N/-		Motor		
$ \frac{1}{122} \text{were} $																					
$ \label{eq:result} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$													@) T/L3	Inverter		w©	`	\bigcirc		
$ \frac{1}{10000000000000000000000000000000000$		• (Dutlir	ne dimens	sion (L	Init: mr	n)							~			\sim				
$ \frac{1}{10000000000000000000000000000000000$				Less that	an D					Le	ss than D					Ì					
$ \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000000000000000000000000000000000$					R	0				/						Withi	п н 🦓		1		
$ \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000000000000000000000000000000000$				H A	S	1				1		Ĭ]			Į		Ĭ		>	
OC reactor or power suppire, r.HEL-HOK Node/ Tisk Node/ T				WI	Ų	Ì			I	H W	×.					\leq	W1		DI		
DC reactor prover supply coordination FR-HEL-H0JK Model W W1 W1 D D1 d Mass (kg) 1.5K 85 74 81 61 - M4 0.4 0.75K 85 74 81 70 - M4 0.8 1.5K 85 74 81 70 - M4 0.9 3.7K 77 55 92 82 67 M4 1.9 7.5K 86 60 113 98 72 M4 1.9 7.5K 86 60 113 98 72 M4 1.9 15K 105 64 133 112 79 M6 3.3 15K 105 64 133 112 79 M6 4.7 22K 105 64 93 175 104 M6 5.6 37K 133 86 117 105 106 107 108 5.4 45K 153 128 130 100					0.4K to	2.2K						to 55	к			W	FR-HI	EL-75K t	o 110K		
Model W W W W D D1 d Mass Mass Mass 0.75K 85 74 81 61 - M4 0.4 0.75K 85 74 81 61 - M4 0.5 1.5K 85 74 81 70 - M4 0.9 3.7K 77 55 92 82 57 M4 1.5 5.5K 77 55 92 82 57 M4 1.5 7.5K 86 60 133 87 79 M6 3.3 15K 105 64 133 112 79 M6 3.3 15K 105 64 93 165 94 M6 1.1 13.8K 105 64 93 165 94 1.0 75 152 125 95 M5 6 13.8K 114 72 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FR-H</td> <td>EL-H0.75k</td> <td>(to H</td> <td>55K</td> <td></td> <td></td> <td></td> <td>FR-HEL</td> <td>H75K t</td> <td>o H355I</td> <td>K</td> <td></td>										FR-H	EL-H0.75k	(to H	55K				FR-HEL	H75K t	o H355I	K	
DC reactor 0.75k 85 74 81 01 - M4 0.4 0.75k 85 74 81 01 - M4 0.8 2.2K 85 74 81 70 - M4 0.9 3.7K 77 55 92 82 57 M4 1.5K 86 50 100 80 54 M4 1.3 7.5K 86 01 13 98 72 M4 1.9 1.5K 86 55 120 95 95 M5 3.5 11K 105 64 133 117 90 M6 3.7 116 105 40 116 100 75 152 125 95 M5 5 11K 105 64 93 165 94 M6 4.1 22K 105 64 93 175 104 M6 5.6 30k 114 72 100 200 101 M6 7.8 37K				Model	w	W1	W1	D	D1	d		1	I	Nodel	w	W1	W1	D	D1	d	
DC reactor pr power supply coordination 0.75K 85 74 81 61 - M4 0.5 1.5K 85 74 81 70 - M4 0.9 2.2K 85 74 81 70 - M4 0.9 3.7K 77 55 92 82 57 M4 1.5 5.5K 77 55 92 82 57 M4 1.5 7.5K 86 60 113 98 72 M4 2.5 11K 105 64 133 112 79 M6 3.3 15K 105 64 93 155 94 M6 4.7 22K 105 64 93 175 104 M6 5.6 30K 114 72 100 200 101 M6 7.8 30K 114 72 100 200 101 M6				0.4K	70	60	71	61	-	M4									-	_	
1.5K 85 74 81 70 - M4 0.8 2.2K 85 74 81 70 - M4 0.9 3.7K 77 55 92 82 57 M4 1.5 5.5K 77 55 92 92 67 M4 1.9 7.5K 86 60 113 98 72 M4 2.5 11K 105 64 133 112 79 M6 3.3 15K 105 64 93 165 94 M6 4.7 22K 105 64 93 175 104 M6 5.6 30K 114 72 100 200 101 M6 7.8 30K 114 72 100 200 101 M6 13.6 138 86 117 205 108 M6 11 55K 153 126 132 209 122 M6 12.6 75K 150 </td <td></td> <td></td> <td></td> <td>0.75K</td> <td>85</td> <td>_</td> <td>81</td> <td>-</td> <td>-</td> <td>M4</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td>				0.75K	85	_	81	-	-	M4	-							-		-	
FR-HEL-(H)ſK 3.7K 77 55 92 82 57 M4 1.5 5.5K 77 55 92 92 67 M4 1.9 7.5K 86 60 113 98 72 M4 2.5 11K 105 64 133 112 79 M6 3.3 15K 105 64 133 115 84 M6 4.1 22K 105 64 93 175 104 M6 5.6 30K 114 72 100 200 101 M6 7.8 30K 114 72 100 200 101 M6 7.8 30K 114 72 100 200 101 M6 7.8 30K 114 72 100 200 102 M6 12.6 37K 133 86 117 205 108 M6 11 55K 150 130 190 340 310 M6 13	or power supply					_			-		-								-	-	
5.5K 77 55 92 92 67 M4 1.9 7.5K 86 60 113 98 72 M4 2.5 11K 105 64 133 112 79 M6 3.3 15K 105 64 133 115 84 M6 4.1 18.5K 105 64 93 165 94 M6 5.7 30K 114 12 100 200 101 M6 5.8 30K 114 12 100 200 101 M6 7.8 37K 133 86 117 195 98 M6 10 45K 133 126 132 209 122 M6 12.6 75K 150 130 190 340 310 M6 17 90K 150 130 200 400 365 M8 20 110K 175 150 200 400 365 M8 20						_	-	-												_	
7.5K 86 60 113 98 72 M4 2.5 11K 105 64 133 112 79 M6 3.3 15K 105 64 133 115 84 M6 4.1 18.5K 105 64 93 165 94 M6 4.7 22K 105 64 93 175 104 M6 5.6 30K 114 72 000 200 101 M6 7.8 37K 133 86 117 125 108 M6 11 55K 153 126 132 209 122 M6 12.6 75K 150 130 190 340 310 M6 17 90K 150 130 190 340 310 M6 17 90K 150 130 190 340 310 M6 17 90K 150 130 100 365 M8 20 110K	A CONTRACT OF					_					-								-	-	-
No 15K 105 64 133 115 84 M6 4.1 18.5K 105 64 93 165 94 M6 4.7 22K 105 64 93 175 104 M6 5.6 30K 114 72 100 200 101 M6 7.8 37K 133 86 117 195 98 M6 10 45K 133 86 117 195 98 M6 10 45K 133 86 117 205 108 M6 11 55K 153 126 132 209 122 M6 12.6 75K 150 130 190 340 310 M6 17 90K 150 130 200 340 310 M6 19 110K 175 150 200 400 365 M8 20	11-1						-	_		-	-									_	
18.5K 105 64 93 165 94 M6 4.7 22K 105 64 93 175 104 M6 5.6 30K 114 72 100 200 101 M6 7.8 37K 133 86 117 195 98 M6 10 45K 133 86 117 205 108 M6 11 55K 153 126 132 209 122 M6 12.6 75K 150 130 190 340 310 M6 17 90K 150 130 200 340 310 M6 17 90K 150 130 200 340 310 M6 19 110K 175 150 200 400 365 M8 20 H132K 175 150 200 400 365 M8 20 H10K 150 130 190 340 310 M6 22	The second		>			-				-	-									_	-
30K 114 72 100 200 101 M6 7.8 37K 133 86 117 195 98 M6 10 45K 133 86 117 205 108 M6 11 55K 153 126 132 209 122 M6 12.6 75K 150 130 190 340 310 M6 17 90K 150 130 200 340 310 M6 19 110K 175 150 200 400 365 M8 20 H10K 175 150 200 400 365 M8 20 H10K 175 150 200 400 365 M8 20 H10K 150 130 100 365 M8 20 H10K 150 130 190 340 310 M6 22 H13K 175 150 200 405 370 M8 28 H			200			-			-	-	-									_	
37K 133 86 117 195 98 M6 10 45K 133 86 117 205 108 M6 11 55K 153 126 132 209 122 M6 12.6 75K 150 130 190 340 310 M6 17 90K 150 130 200 340 310 M6 19 110K 175 150 200 400 365 M8 20 H12K 175 150 200 400 365 M8 20 H13K 175 150 200 400 365 M8 20 H10K 175 150 200 400 365 M8 20 H13K 175 150 200 400 365 M8 20 H13K 175 150 200 405 370 M8 28 H18K 175 150 240 405 370 M8 29						-				-				H30K	133	90	178	120	80	M5	6.5
45K 133 86 117 205 108 M6 11 55K 153 126 132 209 122 M6 12.6 75K 150 130 190 340 310 M6 17 90K 150 130 200 340 310 M6 19 110K 175 150 200 400 365 M8 20						_				-			٥0 <							_	
75K 150 130 190 340 310 M6 17 90K 150 130 200 340 310 M6 19 110K 175 150 200 400 365 M8 20 H10K 150 130 200 400 365 M8 20 H10K 175 150 200 400 365 M8 20 H10K 175 150 200 400 365 M8 20 H10K 150 130 190 340 310 M6 19 H10K 175 150 200 400 365 M8 20 H110K 150 130 195 340 310 M6 22 H132K 175 150 200 405 370 M8 28 H185K 175 150 240 405 370 M8 30 H220K 175 150 240 405 370 M8 36					-					+			4								
90K 150 130 200 340 310 M6 19 110K 175 150 200 400 365 M8 20 H132K 175 150 200 405 370 M8 26 H160K 175 150 205 405 370 M8 29 H220K 175 150 240 405 370 M8 30 H220K 175 150 240 405 370 M8 30 H220K 175 150 240 400 M8 35 H280K 190 165 255 440 400 M8 38						_		_		-	-									_	
110K 175 150 200 400 365 M8 20 H132K 175 150 200 400 365 M8 20 H132K 175 150 200 405 370 M8 26 H160K 175 150 240 405 370 M8 29 H220K 175 150 240 405 370 M8 29 H220K 175 150 240 405 370 M8 30 H220K 175 150 240 400 M8 35 H220K 175 150 240 400 M8 35 H220K 190 165 255 440 400 M8 35 H280K 190 165 255 440 400 M8 38 H315K 210 185 250 495 450 M10 42				90K	150	130	200	340	310	_										_	
H185K 175 150 240 405 370 M8 29 H220K 175 150 240 405 370 M8 30 H250K 190 165 250 440 400 M8 35 H280K 190 165 255 440 400 M8 38 H315K 210 185 250 495 450 M10 42				110K	175	150	200	400	365	M8	20]									
H220K 175 150 240 405 370 M8 300 H250K 190 165 250 440 400 M8 35 H280K 190 165 255 440 400 M8 38 H315K 210 185 250 495 450 M10 42																				_	
H250K 190 165 250 440 M8 35 H280K 190 165 255 440 400 M8 38 H315K 210 185 250 495 450 M10 42																				_	
H315K 210 185 250 495 450 M10 42														H250K						-	
																				_	
																				_	
							cables	used s	hould I	be edr	al to or	arge	r tha	in that of t	he pov	ver su	pply ca	bles (R	/L1, S/	L2, T/I	_3). (Refer
 (a) The size of the cables used should be equal to or larger than that of the power supply cables (R/L1, S/L2, T/L3). (Refer to page 99) 																					
to page 99) (b) Approximately 93% of the power factor improving effect can be obtained (94.4% when calculated with 1 power factor				SL	upervis	ed by t	the Mir	nistry of	Land,	Infras	tructure,	Trar	ispo	rt and Tou	urism c	f Japa	in).			,(,
 to page 99) (b) Approximately 93% of the power factor improving effect can be obtained (94.4% when calculated with 1 power factor for the fundamental wave according to the Architectural Standard Specifications (Electrical Installation) (2013 revision) supervised by the Ministry of Land, Infrastructure, Transport and Tourism of Japan). 				Ŵ	/1 and	D1 ind	icate d	istance	s betw	een in	stallatio	n hole	es. T	he install	ation h	iole siz					
 to page 99) (b) Approximately 93% of the power factor improving effect can be obtained (94.4% when calculated with 1 power factor for the fundamental wave according to the Architectural Standard Specifications (Electrical Installation) (2013 revision) supervised by the Ministry of Land, Infrastructure, Transport and Tourism of Japan). (c) The drawings shown above are sample outline dimension drawings. The shape differs by the model. W1 and D1 indicate distances between installation holes. The installation hole size is indicated by d. 				•(H)55K	or lowe	er: Hor	izontal	installa	tion o					wn bel	UW.					
 to page 99) (b) Approximately 93% of the power factor improving effect can be obtained (94.4% when calculated with 1 power factor for the fundamental wave according to the Architectural Standard Specifications (Electrical Installation) (2013 revision) supervised by the Ministry of Land, Infrastructure, Transport and Tourism of Japan). (c) The drawings shown above are sample outline dimension drawings. The shape differs by the model. W1 and D1 indicate distances between installation holes. The installation hole size is indicated by d. (d) When installing a DC reactor (FR-HEL), install in the orientation shown below. •(H)55K or lower: Horizontal installation or vertical installation 				(e) Ke	eép en	oughc	learan	ce arou	ind the	reacto											
 to page 99) (b) Approximately 93% of the power factor improving effect can be obtained (94.4% when calculated with 1 power factor for the fundamental wave according to the Architectural Standard Specifications (Electrical Installation) (2013 revision) supervised by the Ministry of Land, Infrastructure, Transport and Tourism of Japan). (c) The drawings shown above are sample outline dimension drawings. The shape differs by the model. W1 and D1 indicate distances between installation holes. The installation hole size is indicated by d. (d) When installing a DC reactor (FR-HEL), install in the orientation shown below. •(H)55K or lower: Horizontal installation •(H)75K or higher: Horizontal installation (e) Keep enough clearance around the reactor because it heats up. 									m 10cr	n eac	h on top	and	bott	om and m	iinimur	n 5cm	each c	on right	and le	ft rega	rdless of
 to page 99) (b) Approximately 93% of the power factor improving effect can be obtained (94.4% when calculated with 1 power factor for the fundamental wave according to the Architectural Standard Specifications (Electrical Installation) (2013 revision) supervised by the Ministry of Land, Infrastructure, Transport and Tourism of Japan). (c) The drawings shown above are sample outline dimension drawings. The shape differs by the model. W1 and D1 indicate distances between installation holes. The installation hole size is indicated by d. (d) When installing a DC reactor (FR-HEL), install in the orientation shown below. •(H)55K or lower: Horizontal installation •(H)75K or higher: Horizontal installation 																					
 to page 99) (b) Approximately 93% of the power factor improving effect can be obtained (94.4% when calculated with 1 power factor for the fundamental wave according to the Architectural Standard Specifications (Electrical Installation) (2013 revision) supervised by the Ministry of Land, Infrastructure, Transport and Tourism of Japan). (c) The drawings shown above are sample outline dimension drawings. The shape differs by the model. W1 and D1 indicate distances between installation holes. The installation hole size is indicated by d. (d) When installing a DC reactor (FR-HEL), install in the orientation shown below. •(H)55K or lower: Horizontal installation or vertical installation •(H)75K or higher: Horizontal installation (e) Keep enough clearance around the reactor because it heats up. (Keep a clearance of minimum 10cm each on top and bottom and minimum 5cm each on right and left regardless of 								,													

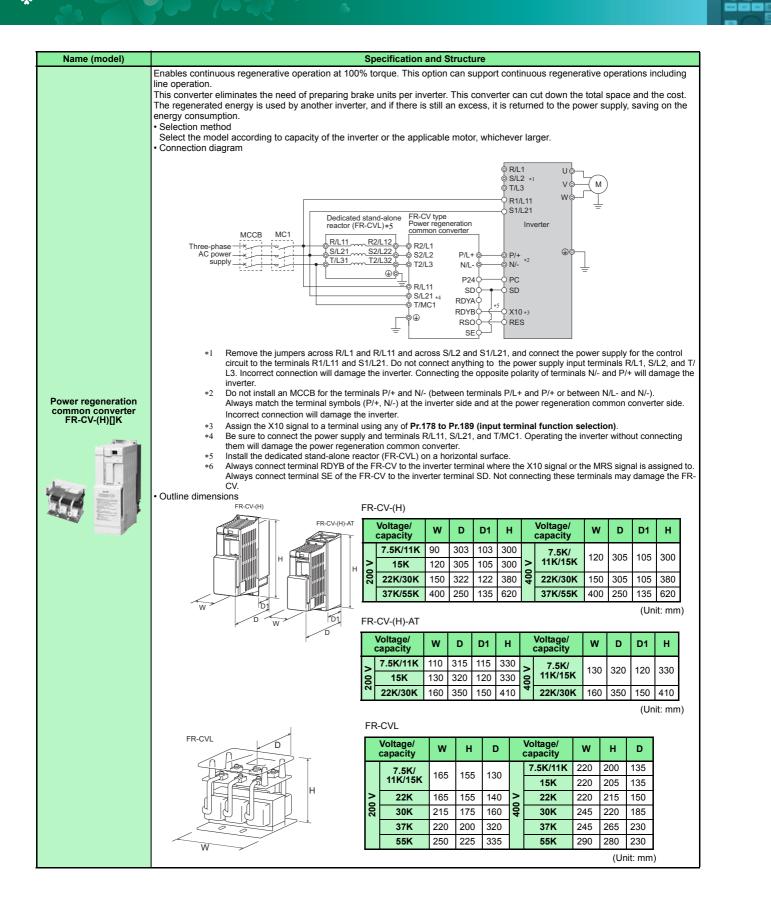
×

						Sp	ecifica	tion and	Structu	ire					
	inverters wi														
	Мо	del: FR-BU2-[]	-	4 EK	2.74	200 7.5K		30K 55			5K H30I	400	V (H75k	C 112	20K H280F
		ble motor capac	ity ⁻	The ap	oplicab	le capad	city diffe	ers by the	braking	torque	and the c	peration	rate (%	6ED).	
		ted brake resist e (parallel) drivit			-71: - 7	,				,	refer to the		,		-BR5 *1 cted inverter.
		ximate mass (kg	-	0.9	0.9	<u> </u>		1.4 2.0		0.9		2.0	2.0	13	13
	[Resistor u	*1 Please cont unit]	act yo	our sale	es repre	esentativ	e to use	a brake r	esistor o	ther tha	in MT-BR5				
	Mode	I: GRZG type *2		GZG30 50Ω (1		GRZG 10Ω (3 ι		V GRZG30 5Ω (4 unit		RZG400 1 (6 unit		G200- 3 units)	400 GRZG3 5Ω (4 u	300-	GRZG400- 2Ω (6 units)
	Numbe	er of connectable units	-	unit	,	3 in ser (1 set)	ies 4	4 in series (1 set)	s 6ir	n series set)		eries	8 in ser (2 sets)	ies	12 in series (2 sets)
		arging resistor ed resistance (0		0		30		20	12	,	60	<i>'</i>	40	, 	24
	Conti	nuous operation ssible power (W	1 1	00		300		600	120	00	600		1200		2400
		*2 The 1 set		ains the	e numb	er of uni	ts in the	parenthes	es. For	the 400	V class, 2	sets are	required	l.	
		del: FR-BR-[]		15K	200 V 30K	55K	H15K	400 V H30K	H55K		Nodel: MT		5	00 V 55K	400 V H75K
	combin	harging resistor ed resistance (Ω	2) °	3	4	2	32	16	8	com	scharging bined res	istance ((Ω) [∠]		6.5
Brake unit	permi	nuous operation ssible power (W) 9	90	1990	3910	990	1990	3910	per	ntinuous missible j	oower (V	V) ⁵⁵		7500
R-BU2-(H)[]K harging resistor		kimate mass (kg	"	5	30	70	15	30	70	Арр	roximate	mass (k	g) 70)	65
GZG type GZG type	• Combinati	on between the b	orake	unit a	na the	resistor		araina ro	eistor n	nodel	or resisto	r unit m	adol		
esistor unit	Bra	ke unit model				G	RZG ty	<u> </u>	515101 11	liouer	1 1651510				
R-BR-(H)[]K -BR5-(H)[]K					Мос	iel *3			mber o ctable ι		FF	R-BR		M	T-BR5
		FR-BU2-1.5K				0Ω (1 ur	,	1 unit			-		-		
0		FR-BU2-3.7K FR-BU2-7.5K)Ω (3 un Ω (4 unit		3 in seri	,	,	-		-		
	200 V	FR-BU2-15K				2 (6 unit	,	6 in ser	· ·	,	FR-BR-1	5K	-		
		FR-BU2-30K						-			FR-BR-3		-	T-BR5-	55K
		FR-BU2-H7.5	3U2-55K - U2-H7.5K GRZ)Ω (3 un	its)	6 in seri	es (2 se	ets)	-		-	1-01(0-	-551
		FR-BU2-H15K				2 (4 unit	-	8 in ser	`	,	FR-BR-H		-		
	400 V	FR-BU2-H30K FR-BU2-H55K		SRZG	400-21	נ (6 unit	s)	12 in se -	nes (2 s	,	FR-BR-H FR-BR-H		-		
		FR-BU2-H75K						-			-				-H75K
		FR-BU2-H220						-			-				R5-H75K *4 R5-H75K *4
	sure that t • Do not tou		r next e rise o e in co ng res	to the of the ontact	model discha with re	name ind rging re sistors.	dicates t	he numbe is about 1	r of conr 00°C. L out 10 m	nectable Jse hea ninutes	e units in pa at-resistan after the p	arallel. t wires to	perforr		
	Powers volta			0.4	0.	75	1.	5	Moto 2.2	or capa		5 7	.5	11	15
	200	V 50% 30	s F	FR-BU	2-1.5K	(FR-BU	12-3.7K	FR-I	3U2-7.5k	< F	R-BU	2-15K
		100% 30 50% 30		FR-BU	l2-1.5K	, Fl	R-BU2-	3./K	FR-BU FR-BU			3U2-15K			3U2-15K*5 2-H15K
	400	V		*6					FR-BU			3U2-H15			2-H30K
	400 V 100% 30 s							•	Moto	or capa	city				
	Power s		40.5		2	3	U		37		45			55	
	Powers volta		e	18.5 2×FR-l	2 BU2-1				3×FR-I	BU2-15	5 K *5		4	l×FR-E	3U2-15K*5
		torque 50% 30	e s 2	2×FR-		5 K *5	<fr-bl< td=""><td>J2-15K*5</td><td>3×FR-I 5×FR-I</td><td></td><td></td><td>R-BU2-1</td><td></td><td></td><td>BU2-15K*5 BU2-15K*5</td></fr-bl<>	J2-15K*5	3×FR-I 5×FR-I			R-BU2-1			BU2-15K*5 BU2-15K*5
	volta	V 50% 30	e 2 0s 2 0s 3 0s F	2×FR-I 3×FR-I FR-BU	BU2-18 BU2-18 I2-H30	5K*5 5K*5 4× K	<fr-bl< td=""><td>J2-15K*5</td><td></td><td>BU2-15 BU2-H</td><td>5K*5 6×F1 30K*5</td><td>R-BU2-1</td><td>5K*5 7</td><td>∕×FR-E</td><td></td></fr-bl<>	J2-15K*5		BU2-15 BU2-H	5K*5 6×F1 30K*5	R-BU2-1	5K*5 7	∕×FR-E	

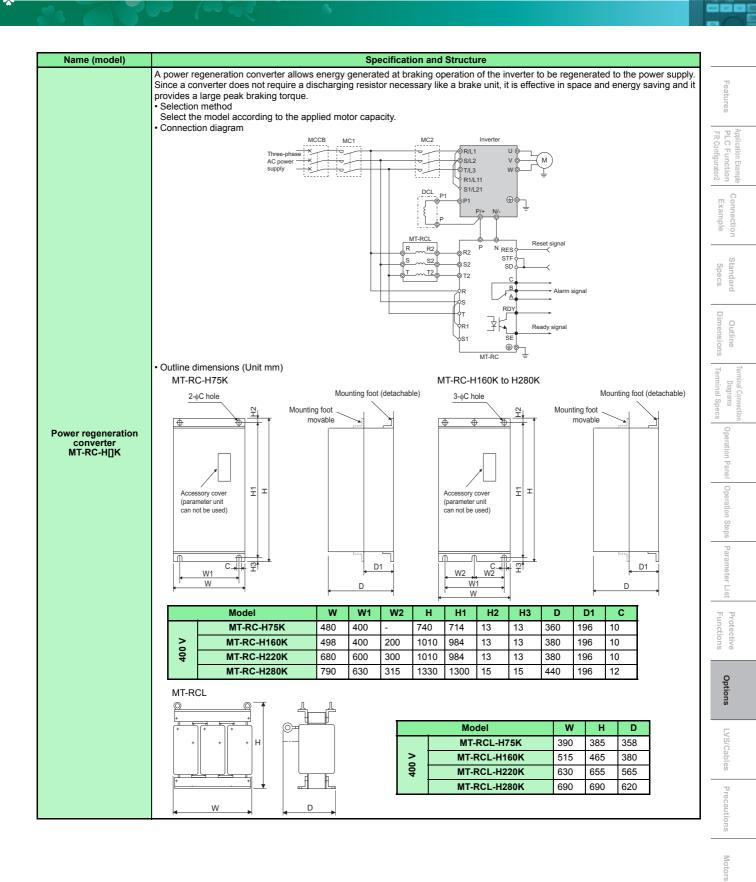
X

Name (model)								Spec	ificati	on and S	Structu	re							
		R-BR]																	
			mum temp						out 10	0°C. The	erefore,	use h	neat-res	sistant	wires	s (such a	as glass	wires).
		D at Sh		ing win	sii biar	ing torq		100 /0			Mat		oacity						
			Mode	1		5.5 kW	7.5	L-1A/ 4	1 kW	15 kW	18.5		22 kW	30 k		37 kW	45 kW	55	
			FR-BU2-	15K		5.5 KV	40	KVV 1		1 5 KVV	10.5	KVV	22 K V V	30 K	vv 、	37 KVV	40 KVV	55	KVV
		200 V	FR-BU2		%ED	00	40	6	-	30	- 25		- 15	- 10	-		-	-	
		200 V	FR-BU2		%ED	-	-	0	5	-	25 90		15 60	30		20	- 15	- 10	
			FR-BU2-			- 80	- 40	- 1	5	- 10	90		00	30		20	15	10	
		400 V	FR-BU2-I		%ED	00	40	6		30	- 25		- 15	- 10	-		-	-	
		400 V	FR-BU2-I		%ED	-	-	0	5	-	25 90		15 60	30	-	20	- 15	- 10	
			FK-DU2-I	1991		-	-	-		-	90		00	30	2	20	15	10	
	Bra	iking toi	rque (%) at	10%EI) in sh	ort-time	rating	of 15 s	(%)										
											M	otor c	apacity	v					
			Мо	lel		5.5	kW	7.5 kW	/ 11 k	W 15		.5 kW			kW	37 kW	45 k\	N 55	kW
			FR-BU2-	15K		280		200	120	100			70	-	NVV				NVV
		200 V	FR-BU2		Braki torqu	ng	,	-	260	180	16		130	10	0	80	70	-	
			FR-BU2-		(%)			_	-	-	30		250	18		150	120	10	0
			FR-BU2-I			280)	200	120	100			70	-	•	-	-	-	•
		400 V	FR-BU2-		Braki torqu	ng	-	-	260	180			130	10	0	80	70	-	
			FR-BU2-		(%)			-	-	-	30		250	18		150	120	10	0
												-		-	-				-
G type Gt ype tor unit R-(H)[]K	[M	1T-BR5] e sure to		vell-ven	tilated	tc	tb	Time t	on of t	he resist	1 t2	Ventili		+t2+t3+t		when in:	stalling t	the res	isto
e iit K	[M • Bé a • Tr • Tr re • A	e sure ti place s ne maxi ny heat- ne temp sistor u resistor] o select a v uch as an e mum temp sensitive c serature of nit may res nit may res nit sequ , the decel	enclosu erature ompon the resi sult in o ipped v	re, whe rise of ent awa stor un verhea with the	place fo ere heat the resi ay from it abnor t if the te ermostat	r the ir is not stor u the re- mally emper (NO o	nstallati t well di nit is at sistor (r increas ature o contact	on of ti ffused. pout 30 ninimu es if th f the bi) for ov	he resist Odeg. W m 40 to e brake rake unit rerheat p	Then wir 50cm). unit is c is left u rotectio	Ventili ring, b pperat unchai	ation is e carefi ed exce nged, so	necess ul not t eeding witch c ective	sary v o tou the s	ich the r specified inverte	resistor. I duty. S er.	Also, I Since th	keej ne
/pe ype · unit H)[[K (H)[]K	[M • Be a • Tr an • Tr re • A op	e sure to place s ne maxi ny heat- ne temp sistor u resistor peration	o select a w uch as an e mum temp sensitive c perature of nit may res r unit is equ	enclosu erature ompon the resi sult in o ipped v eration	re, whe rise of ent awa stor un verhea vith the time m	place fo ere heat the resi ay from it abnor t if the te rmostat ay be to	r the ir is not stor u the re- mally emper (NO o o sho	nstallati t well di nit is at sistor (r increas ature o contact rt. Set f	on of ti ffused. pout 30 ninimu es if th f the bi) for ov	he resist Odeg. W m 40 to e brake rake unit rerheat p	Then wir 50cm). unit is c is left u rotectio	Ventili ring, b pperat unchai	ation is e carefi ed exce nged, so	necess ul not t eeding witch c ective	sary v o tou the s	ich the r specified inverte	resistor. I duty. S er.	Also, I Since th	keej ne
type type or unit (H)[[K -(H)][K	[M • Be a • Tr an • Tr re • A op	e sure to place s ne maxi ny heat- ne temp sistor u resistor peration D at sh	o select a v uch as an e imum temp sensitive c perature of nit may res r unit is equ t, the decel ort-time rat	enclosu erature ompon the resi sult in o lipped v eration ing who	re, whe rise of ent awastor un verhea vith the time m en brak	place fo ere heat the resi ay from t if abnor t if the te ermostat ay be to ing torq	r the ir is not stor u the re- mally emper (NO c o sho ue is	nstallati t well di nit is ab sistor (r increas ature o contact rt. Set f 100%	on of ti ffused. pout 30 ninimu es if th f the br f the br f the br f the br f the br	he resist 00deg. W m 40 to e brake rake unit rarheat p erter's de	Then wir bor unit. Then wir 50cm). unit is c is left u rotectio ecelerat	Ventilia ring, b operat unchai on. If the tion time	tb=t1 ation is the carefined exceeninged, so this protonic protoni	necess ul not t eeding witch c ective er.	sary v o tou the s off the therm	ich the r specifiec inverte nostat a	resistor. I duty. S r. ctivates	Also, I Since th	keep ne mal
De pe unit)[[K)[[K	[M • Be a • Tr an • Tr re • A op	e sure ti place s ne maxi ny heat- ne temp sistor u resistor peration D at sh Nur con	o select a v uch as an e imum temp sensitive c perature of nit may res r unit is equ , the decel ort-time rat	enclosu erature ompon the resi sult in o ipped v eration	re, whe rise of ent awa stor un verhea vith the time m	place fo ere heat the resi ay from it abnor t if the te rmostat ay be to	r the ir is not stor u the re- mally emper (NO o o sho	nstallati t well di nit is at sistor (r increas ature o contact rt. Set f	on of ti ffused. pout 30 ninimu es if th f the bi) for ov	he resist Odeg. W Im 40 to e brake rake unit rerheat p erter's de	Then wir 50cm). unit is c is left u rotectio ecelerat	Ventilia ring, b operat unchai on. If the	tb=t1 ation is te carefi ed exce nged, s nis prote me long	necess ul not t eeding witch c ective	sary v o tou the s	ich the r specifiec inverte nostat a	resistor. I duty. S er.	Also, I Since th	keep ne
oe pe unit)[[K 1][[K	[M • Be a • Tr an • Tr re • A op	e sure t place s ne maxi ny heat- ne temp sistor u resistor peration D at sh Nur con u 20	o select a w uch as an e imum temp sensitive of nit may res r unit is equ , the decel ort-time rat mber of nectable nits*7	enclosu erature ompon the resi sult in o ipped v eration ing who 75	re, whe rise of ent awa stor un verhea vith the time m en brak	place fo pre heat the resi ay from it abnorn t if the te trmostat ay be to ing torq 110	r the ir is not stor u the re- mally emper (NO c o sho ue is 132	nstallati t well di nit is ab sistor (r increas ature o contact rt. Set t 100%	on of t fused. pout 30 ninimu es if th f the br f the br f the br f the br f the br f the br	he resist 10deg. W 10 deg. W 10 to 10 to 1	Then wir 50cm). unit is construction color ca	Ventili ring, b operat unchai on. If th tion tir	tb=t1 ation is the carefined excended, so this protone long	necess ul not t eeding witch c ective er.	sary v o tou the s off the therm 375	ich the r specifiec inverte nostat a	resistor. I duty. S r. ctivates	Also, I Since the in nor	keep ne mal
type st ype or unit -(H)[]K 5-(H)[]K	[M • Be a • Tr an • Tr re • A op	e sure t place s ne maxi ny heat- ne temp sistor u resistor peration D at sh Nur con u 20	o select a w uch as an e imum temp sensitive c sensitive c ortative of init may res r unit is equ ort-time rate ort-time rate mber of nectable nits *7	enclosu erature ompon the resi sult in o ipped v eration ing who 75 kW	re, whe rise of ent awa stor un verhea vith the time m en brak	place fo pre heat the resi ay from it abnorn t if the te trmostat ay be to ing torq 110	the ir is not stor u the re- mally emper (NO c o sho ue is 132	nstallati t well di nit is ab sistor (r increas ature o contact rt. Set t 100%	on of the fused. boout 300 ninimules if the bill for ow he invertised 185 kW	he resist 10deg. W 10 deg. W 10 to 10 to 1	Then wir 50cm). unit is construction color ca	Ventili ring, b operat unchai on. If th tion tir	tb=t1 ation is the carefined excended, so this protone long	necess ul not t eeding witch c ective er.	sary v o tou the s off the therm 375	ich the r specifiec inverte nostat a	resistor. I duty. S r. ctivates	Also, I Since the in nor	keep ne mal
Expe t ype or unit (H)[[K -(H)][K	[M • Ba • Tr • Tr • A op % E	e sure ti place s ne maximy heat- ne temp sistor u resistor u resistor D at sh Nur Con U 20 FR-BI	o select a v uch as an e imum temp sensitive c sensitive c or unit is equ nort-time rate mber of nectable nits+7	enclosu erature ompon the resi sult in o lipped v eration ing whe 75 kW 1 5	re, whe rise of ent awa stor un verhea with the time m en brak 90 kW -	olace fo re heat the resi ay from t if abnor t if the te rmostat ay be to ing torq	the ir is not stor u the re- mally emper (NO c o sho ue is 132	nstallati t well di nit is ab sistor (r increas ature o contact rt. Set t 100%	on of ti ffused. pout 30 ninimu es if th f the bi) for ov he invo	he resist 10deg. W Im 40 to le brake rake unit rerheat p erter's de M 220 kW - -	or unit. ¹ then wir 50cm). unit is c is left u rotectio eccelerat	Ventili ring, b operat unchai on. If th tion tir	tb=t1 ation is be carefined exceeninged, so nis proteine long y 315 kW - -	necess ul not t eeding witch c ective er.	sary v o tou the s off the therm 375	ich the r specifiec inverte nostat a	resistor. I duty. S r. ctivates	Also, I Since the in nor	keep ne mal
туре t ype or unit (H)[[К -(H)][К	[M • Ba • Tr • Tr • A op % E	e sure ti place s ne maximy heat- ne temp sistor u resistor u resistor D at sh Nur Con U 20 FR-BI	o select a w uch as an e imum temp sensitive c perature of init may res r unit is equ i, the decel nort-time rat mber of nectable nits+7 00 V U2-55K	enclosu erature ompon the resi sult in o ipped v eration ing whe 75 kW 1 5 2 20	re, who rise of ent awa stor un verhea with the time m en brak 90 kW - 15	place fo and the resises ay from the term the termostate ay be to ing torq 110 kW - 10	the ir is not stor u the re- mally emper (NO c o sho ue is 132	nstallati t well di nit is at sistor (r increas rature o contact rt. Set 1 100%	on of ti ffused. oout 3C ninimu es if the bi for ov he invo k k W -	he resist 10deg. W Im 40 to le brake rake unit rerheat p erter's de M 220 kW - -	or unit. ¹ then wir 50cm). unit is c is left u rotectio eccelerat	Ventili ring, b poperat unchai n. If ti ion tir 280 kW	tb=t1 ation is be carefined exceeninged, so nis proteine long y 315 kW - -	al+t2+t3+t necess ul not t eeding witch c ective = er. 355 kW - -	sary v o tou the s ff the therm 375 kW -	400 kW -	esistor. I duty. S r. ctivates 450 kW -	Also, I Since th in nor 500 kW - -	keep ne mal
Expe t ype or unit (H)[[K -(H)][K	[M • Be a • Th an • Th re • A op %E	e sure ti place s ne maxiny heat- ne temp sistor u resistor D at sh Nur com u 200 FR-BU 400 FR-BU	o select a w uch as an e imum temp sensitive c perature of init may res r unit is equ ort-time rat ort-time rat nectable nits+7 00 V U2-55K 00 V 12-H75K	enclosu erature ompon the resisult in o lipped veration ing whe 75 kW 1 5 2 20 1 10 2 40 1 80	re, who rise of ent awa stor un verhea with the time m en brak 90 kW - 15 5	place fo re heat the resi ay from t it abnorn t if the te rmostat ay be to ing torq 110 kW - 10 -	r the ir is not stor u the re- mally mper (NO to o sho ue is 132 kW -	nstallati t well di nit is at sistor (r increas rature o contact rt. Set 1 100% 160 kW - - - -	on of ti ffused. bout 30 ininimu es if th f the bi for ov he inve kW - - -	he resist 10deg. W m 40 to e brake rake unit rake unit rerheat p erter's de M 220 kW - - - - 10	or unit. ¹ then wir 50cm). unit is c is left u rotectio cecelerat 250 kW - - - - - - - - - - - - -	Ventili vven	tb=t1 ation is be carefined exceeninged, so nis proteine long y 315 kW - -	I+I2+I3+I necess ul not t eeding witch c ective er.	sary v o tou the s ff the therm 375 kW -	400 kW -	450 kW - -	Also, I Since th in nor 500 kW - -	keep ne mal
rpe ype unit H)⊡K	[M • Be a • Th an • Th re • A op %E	e sure ti place s ne maxiny heat- ne temp sistor u resistor D at sh Nur com u 200 FR-BU 400 FR-BU	o select a w uch as an e imum temp sensitive c perature of init may res r unit is equ ort-time rat ort-time rat nectable nits+7 00 V U2-55K 00 V 12-H75K	enclosu erature ompon the resisult in o lipped veration ring whe 75 kW 1 5 2 20 1 10 2 40	re, who rise of ent awaster unverhea with the with the me en brake 90 kW - 15 5 25 60 -	place fo re heat the resi ay from t abnorn t if the te rmostat ay be to ing torq 110 - 10 - 20	r the ir is not stor u the re: mally mper (NO o o sho ue is KW - - - 10 25 -	nstallati well di is ats sistor (ri increas rature o contact rt. Set 1 100% 160 kW - - - 5	on of ti ffused. oout 3CC ninimu es if th t the b f for ov he invo kw - - - 5 10 -	he resist 10deg. W m 40 to le brake rake unit rerheat p erter's de M 220 kW - - - - - - - 10 20	br unit. hen wir 50cm). unit is c is left u rotectio celerat totor ca 250 kW - - - - - - - - - - - - -	Ventil: vventil	tb=t1 ation is ee carefi ed exce nged, s nis proto ne long y 315 kW - - - - - - - - - 15	++12++13+1 necess ul not t eeding witch c ective er.	sary v o tou the s ff the therm 375 kW -	400 kW -	450 kW - - -	Also, I Since th in nor 500 kW - -	keep ne mal
e pe Init []K)[]K	[M • Be a • Th an • Th re • A op %E	e sure ti place s ne maxin ny heat- ne temp sistor u resistor D at sh Nur conn u 20 FR-BU 40 FR-BU 40 FR-BU	o select a w uch as an e imum temp sensitive c perature of init may res r unit is equ in the decel ort-time rat mber of nectable nits+7 00 V U2-55K 00 V 22-H220K 00 V	enclosu erature ompon the resi uilt in o ripped veration ing whe 75 kW 1 5 2 20 1 10 2 40 1 80 2 - 1 -	re, who rise of ent awaster unverhea with the time m brake 90 kW - 15 5 25 60	place fo re heat the resi ay from t if abnorn t if the te rmostat ay be to ing torq 110 kW - 10 - 20 40	r the ir is not stor u the reamally emper (NO o o sho ue is reamally emper (NO o	nstallati well di nit is at sistor (ri increas rature o contact rt. Set 1 100% 160 kW - - - 5 15	on of ti ffused. out 30 ninimu es if th t the b f for ov he invo k k V - - - 5 5 10	he resist 10deg. W m 40 to le brake rake unit rerheat p erter's de M 220 kW - - - - - - - 10 20	br unit. hen wir 50cm). unit is c is left u rotectio celerat totor ca 250 kW - - - - - - - - - - - - -	Ventili vven	tb=t1 ation is ee carefi ed exce nged, s nis protu- ne long y 315 kW - - - - - - - - 15 10	++12++13++1 necess: ull not t eeding witch c ective - - - - - - - - - - - - - - - - 5 5	sary v o tou the s fff the therm - - - - - 10 -	400 kW - - - - - 10 -	450 kw - - - - 10 -	Also, I ince the innormal inno	keep ne mal <u>56</u> ki - - - -
e pe Init []K)][K	[M • Be a • Th an • Th re • A op %E	e sure ti place s ne maxin ny heat- ne temp sistor u resistor D at sh Nur conn u 20 FR-BU 40 FR-BU 40 FR-BU	o select a w uch as an e imum temp sensitive c perature of init may res r unit is equ in the decel ort-time rat mber of nectable nits+7 00 V U2-55K 00 V 22-H220K 00 V	enclosu erature ompon the resi uult in o reration ing whe 75 kW 1 5 2 20 1 10 2 40 1 80 2 -	re, who rise of ent awaster unverhea with the with the me en brake 90 kW - 15 5 25 60 -	place fo re heat the resi ay from t if abnorn t if the te rmostat ay be to ing torq 110 kW - 20 40 -	r the ir is not stor u the re: mally mper (NO o o sho ue is KW - - - 10 25 -	nstallati t well di nit is at sistor (r increas rature o contact rt. Set 1 100% 160 kW - - 5 15 -	on of ti ffused. oout 3CC ninimu es if th t the b f for ov he invo kw - - - 5 10 -	M 10deg. W 10deg. W m 40 to 10 be brake rake unit rerheat p erter's de 220 10 20 15	br unit. ' hen wir 50cm). unit is c is left u rotectio celerat 250 kW - - - - - - - - - - - - -	Ventil: vventil	tb=t1 ation is ee carefi ed exce nged, s nis protu- ne long y 315 kW - - - - - - - - 15 10	++12++13+1 necess ul not t eeding witch c ective er.	sary v o tou the s fff the therm 375 kW - - - - - -	400 kW - - - - -	450 kw - - - - - - - 10	Also, I Since the finance of the fin	keep ne mal <u>56</u> k1 - - - - - - - - - - - - - - - -
rpe ype unit H)DK	[M • Be a • Th an • Th re • A opp %E	e sure ti place s ne maxin ny heat- ne temp sistor u resistor D at sh Nur conn u 20 FR-BU 40 FR-BU 40 FR-BU	o select a w uch as an e imum temp sensitive co- perature of init may res r unit is equ ort-time rat mber of nectable nits+7 00 V 12-55K 10 V 2-H220K 10 V 2-H220K	enclosu erature ompon the residult in o ipped veration ing who 75 kW 1 5 2 20 1 10 2 40 1 80 2 - 1 - 2 -	re, who rise of ent aw: verhea with the time m en brak 90 kW - 15 5 25 60 - 80 -	place fo re heat the resi ay from t if abnorn t if the te rmostat ay be to ing torq 110 - 10 - 20 40 - 65 -	r the ir is not stor u the re- mally mper (NO d o sho ue is 132 kW - - 10 25 - 10 25 - 40 -	nstallati well di nit is at sistor (r increas rature o contact rt. Set 1 100% - - - 5 15 - 30 -	on of ti ffused. oout 3CC ninimu es if th t the b f for ov he invo kw - - - 5 10 -	M 10deg. W 10deg. W m 40 to 10 be brake rake unit rerheat p erter's de 220 10 20 15	br unit. ' hen wir 50cm). unit is c is left u rotectio celerat 250 kW - - - - - - - - - - - - -	Ventilia vv	tb=t1 ation is ee carefi ed exce nged, s nis protu- ne long y 315 kW - - - - - - - - 15 10	++12++13++1 necess: ull not t eeding witch c ective - - - - - - - - - - - - - - - - 5 5	sary v o tou the s fff the therm - - - - - 10 -	400 kW - - - - - 10 -	450 kw - - - - 10 -	Also, I ince the innormal inno	kee ne ma <u>5</u> k - - - - -
be pe unit)[[K)][[K	[M • Be a • Th an • Th re • A opp %E	e sure ti place s he maxin hy heat- he tempesistor u resistor u resistor u resistor u resistor u resistor D at sh Nur conn u 200 FR-BU 400 FR-BU 400 FR-BU 400 FR-BU	o select a v uch as an e imum temp sensitive c sensitive c or unit is equ nort-time rate mber of nectable nits*7 00 V 12-H75K 10 V 2-H220K 10 V 2-H220K 10 V 2-H280K	enclosu erature ompon the residult in o ipped veration ing who 75 kW 1 5 2 20 1 10 2 40 1 80 2 - 1 - 2 -	re, who rise of ent aw: verhea with the time m en brak 90 kW - 15 5 25 60 - 80 -	place fo re heat the resi ay from t if abnorn t if the te rmostat ay be to ing torq 110 - 10 - 20 40 - 65 -	r the ir is not stor u the re- mally mper (NO d o sho ue is 132 kW - - 10 25 - 10 25 - 40 -	nstallati well di nit is at sistor (r increas rature o contact rt. Set 1 100% - - - 5 15 - 30 -	on of ti ffused. oout 3CC ninimu es if th t the b f for ov he invo kw - - - 5 10 -	Me resist 10deg. W M 10deg. W H 10dg. H H	tr tr	Ventilia ing, b poperat nnchai nn. If the ion tirr pacit 280 - - - - -	tb=t1 ation is ee carefi ed exce nged, s nis prote ne long y 315 kW - - - - - 15 10 20	++12++13+1 necess ul not t eeding witch c ective - - - - - - - - - - - - - - - 5	sary v o tou the s fff the therm - - - - - 10 -	400 kW - - - - - 10 -	450 kw - - - - 10 -	Also, I ince the innormal inno	kee ne mal <u>5</u> k - - - - - - -
e nit]K []K	[M • Be a • Th an • Th re • A opp %E	e sure ti place s ne maxin ny heat- ne temp sistor u resistor D at sh Nur con U at sh Nur Con U FR-BU 40 FR-BU 40 FR-BU 40 FR-BU	o select a w uch as an e imum temp sensitive co- perature of init may res r unit is equ ort-time rat mber of nectable nits+7 00 V 12-55K 10 V 2-H220K 10 V 2-H280K 10 V 2-H280K 10 V 2-H280K	enclosu erature ompon the resis sult in o tipped v eration 75 kW 1 5 2 20 1 10 2 40 1 80 2 - 1 - 2 - 5 short-t	re, who rise of ent aww. verhea with the time m en brak 90 kW - 15 5 25 60 - 80 - 80 - me rat 90	place fo re heat the resi ay from ti i abnorn t if the te rmostat ay be to ing torq 110 - 20 40 - 65 - ng of 15 110	r the iri is not stor u the re- mally mper (NO o o sho ue is KW - - - 10 25 - 40 - - - 40 - - - 40 - - -	nstallati well di nit is at sistor (ri increas rature o contact rt. Set 1 100% - - - 5 15 - 30 -) 160	on of ti ffused. oout 300 ninimu es if th f the b f or ov he invo 185 kW - - - 5 10 - 20 - - 20 -	M 100deg. W 100deg. W m 40 to 100 be brake rake unit rerheat p erter's de 220 M 20 15 - 10 20 15 - M 220	1 -	Ventilia vv	tb=t1 ation is ee carefi ed exce nged, s nis protu- ne long y 315 kW - - - - 15 10 20 y 315	++12++13++1 necess: ul not t eeding witch c ective er.	sary v o tou the s ff the therm - - - - - 10 - 15	400 kW - - - - - 10 - 15	450 kW - - - - - - - - - - - - - - - - - -	Also, I bince the first of the	keep mal 56 kl - - - - - - - - 10
e e JK DK	[M • Be a • Th an • Th re • A opp %E	e sure ti place s ne maxi ny heat- ne temp sistor u resistor Dat sh Nur con U at sh Nur Con U at sh Nur Con GR-BU 40 FR-BU 40 FR-BU king to Nur con u u	o select a w uch as an e imum temp sensitive c perature of nit may res r unit is equ i, the decel ort-time rat mber of nectable nits*7 00 V 12-H75K 00 V 2-H220K 00 V 2-H220K rque (%) in mber of nectable nits*7	enclosu erature ompon the resis sult in o tipped v eration 75 kW 1 5 2 20 1 10 2 40 1 80 2 - 1 - 2 - 5 short-t	re, who rise of ent aww. stor ur werhea with the time m en brak 90 kW - - 15 5 25 60 - 80 - 80 - - 80 - 80 kW	place fo re heat the resi ay from ti it abnorn t if the te rmostat ay be to ing torq 110 - 20 40 - 65 - ng of 15 110 kW	r the iri is not stor u the really emper (NO & o sho ue is kw - - - - 10 25 - - 40 - - - 5 s (%	nstallati t well di nit is ab sistor (ri increas rature o contact rt. Set 1 100% 160 kW - - 5 15 - 30 -) 160 kW	on of tt ffused. out 300 ninimu es if th f the b of or ov he invo - - - 5 10 - - 20 - - - 10 - - 20 - - -	M 40 100 deg. W W 100 deg. W W 100 deg. W W 100 deg. W W 100 deg. W P 150 deg. M P 1200 deg. W M 220 kW P	Then wir 50 cm). unit is c is left u rotectio celerat 250 kW 	Ventilia ing, b poperat unchaa n. If the ion tir pacit 280 kW - - - - - - - - - - - - -	tb=t1 ation is ee carefi ed exce nged, s his protu- ne long y 315 kW - - - - - 15 10 20 y 315 kW	++t2++3++1 necess ul not t eeding witch c ective - - - - - - - - - - - - - - - - - - -	sary v o tou the s ff the therm - - - - 10 - 15 375 kW	400 kW - - - 10 - 15 400 kW	450 kW - - - - - - 10 - - 15	Also, I ince the innor innor - - - 5 - 10	keep mal 56 kl - - - - 10
type it ype or unit -(H)[IK 5-(H)[IK	[M • Be a • Th an • Th re • A opp %E	e sure ti place s ne maxin ny heat- ne temp sistor u resistor D at sh Nur conr u 20 FR-BU 40 FR-BU 40 FR-BU 40 FR-BU 40 FR-BU 40 FR-BU 20 CR-BU 20	o select a w uch as an e imum temp sensitive c perature of nit may res r unit is equ i, the decel ort-time rat mber of nectable nits*7 00 V 12-H75K 00 V 2-H220K 00 V 2-H280K rque (%) in mber of nectable nits*7	enclosu erature ompon the resis sult in o tipped v eration 75 kW 1 5 2 20 1 10 2 40 1 80 2 - 1 - 2 - 5 kort-t 75 kW 1 70	re, who rise of ent aww. stor ur werhea with the time m en brak 90 kW - 15 5 25 60 - 80 - 80 - 80 - 80 kW 60	place fo re heat the resi ay from ti it abnorn t if the te rmostat ay be to ing torq 110 kW - 20 40 - 65 - ng of 15 110 kW 50	r the iri is not stor u the re- mally mper (NO o o sho ue is KW - - - 10 25 - 40 - - - 40 - - - 40 - - -	nstallati well di nit is at sistor (ri increas rature o contact rt. Set 1 100% - - - 5 15 - 30 -) 160	on of tt ffused. out 30 ninimu es if th f the b of or ov he invo - - 5 10 - - 20 - - - 20 - - - 20 - - - 20 - - - -	M 40 100 deg. W W 100 deg. W W 100 deg. W W 100 deg. W W 100 deg. W P 150 deg. M P 1200 deg. W M 220 kW P	1 -	Ventilia ing, b poperat unchaa n. If the ion tir pacit 280 kW - - - - - - - - - - - - -	tb=t1 ation is ee carefi ed exce nged, s his protu- ne long y 315 kW - - - - - 15 10 20 y 315 kW	++12++13++1 necess: ul not t eeding witch c ective er.	sary v o tou the s ff the therm - - - - - 10 - 15	400 kW - - - - - 10 - 15	450 kW - - - - - - - - - - - - - - - - - -	Also, I bince the first of the	keep mal 56 kl - - - - - - - - 10
ing resistor 3 type Gt ype stor unit R-(H)[[K R5-(H)[]K	[M • Be a • Th an • Th re • A opp %E	e sure ti place s ne maxi ny heat- ne temp sistor u resistor corration D at sh Nur con U FR-BU 40 FR-BU 40 FR-BU kking tor Nur con u u 20 FR-BU	o select a w uch as an e imum temp sensitive c perature of nit may res r unit is equ i, the decel ort-time rat mber of nectable nits*7 00 V 12-H75K 00 V 2-H220K 00 V 2-H280K rque (%) in mber of nectable nits*7	enclosu erature ompon the resis sult in o tipped v eration 75 kW 1 5 2 20 1 10 2 40 1 80 2 - 1 - 2 - 5 short-t	re, who rise of ent aww. stor ur werhea with the time m en brak 90 kW - - 15 5 25 60 - 80 - 80 - - 80 - 80 kW	place fo re heat the resi ay from ti it abnorn t if the te rmostat ay be to ing torq 110 - 20 40 - 65 - ng of 15 110 kW	r the iri is not stor u the re- mally mper (NO o o sho ue is KW - - - 10 25 - 40 - - - 40 - - - 40 - - -	nstallati t well di nit is ab sistor (ri increas rature o contact rt. Set 1 100% 160 kW - - 5 15 - 30 -) 160 kW	on of tt ffused. out 300 ninimu es if th f the b of or ov he invo - - - 5 10 - - 20 - - - 10 - - 20 - - -	M 40 100 deg. W W 100 deg. W W 100 deg. W W 100 deg. W W 100 deg. W P 150 deg. M P 1200 deg. W M 220 kW P	1 -	Ventilia ing, b poperat unchaa n. If the ion tir pacit 280 kW - - - - - - - - - - - - -	tb=t1 ation is ee carefi ed exce nged, s his protu- ne long y 315 kW - - - - - 15 10 20 y 315 kW	++t2++3++1 necess ul not t eeding witch c ective - - - - - - - - - - - - - - - - - - -	sary v o tou the s ff the therm - - - - 10 - 15 375 kW	400 kW - - - 10 - 15 400 kW	450 kW - - - - - - 10 - - 15	Also, I bince the first of the	keep mal 56 kl - - - - 10


Nur	mber of								Ν	lotor o	apacit	y						
	nectable inits+7	_	75 kW	90 kW	110 kW	132 kW	160 kW	185 kW	220 kW	250 kW	280 kW	315 kW	355 kW	375 kW	400 kW	450 kW	500 kW	560 kW
20	00 V	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR-B	U2-55K	2	20	15	10	-	-	-	-	-	-	-	-	-	-	-	-	-
40	00 V	1	10	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR-BU	J2-H75K	2	40	25	20	10	5	5	-	-	-	-	-	-	-	-	-	-
40	00 V	1	80	60	40	25	15	10	10	5	-	-	-	-	-	-	-	-
FR-BU	2-H220K	2	-	-	-	-	-	-	20	20	15	15	15	10	10	10	5	-
40	00 V	1	-	80	65	40	30	20	15	10	10	10	5	-	-	-	-	-
FR-BU	2-H280K	2	-	-	-	-	-	-	-	-	-	20	20	15	15	15	10	10


Number of								Ν	lotor o	apacit	y						
connectable units+7		75 kW	90 kW	110 kW	132 kW	160 kW	185 kW	220 kW	250 kW	280 kW	315 kW	355 kW	375 kW	400 kW	450 kW	500 kW	560 kW
200 V	1	70	60	50	-	-	-	-	-	-	-	-	-	-	-	-	-
FR-BU2-55K	2	150	120	100	-	-	-	-	-	-	-	-	-	-	-	-	-
400 V	1	100	80	70	55	45	40	35	-	25	-	-	20	-	-	-	-
FR-BU2-H75K	2	150	150	135	110	90	80	70	60	50	45	40	40	-	-	-	-
400 V	1	-	-	150	150	135	115	100	80	55	-	-	-	-	-	-	-
FR-BU2-H220K	2	-	-	-	-	-	-	-	-	150	150	140	120	110	100	90	80
400 V	1	-	-	-	-	150	150	150	125	100	70	-	-	-	-	-	-
FR-BU2-H280K	2	-	-	-	-	-	-	-	-	-	-	-	150	150	130	115	100

*7 *8 The number next to the model name indicates the number of connectable units in parallel.


To obtain a large braking torque, the motor has to have a torque characteristic that meets the braking torque. Check the torque characteristic of the motor.

×



F800

×

Name (model)

T T Ы ____ ... W L.

Install reactors (FR-HCL21 and 22) on a horizontal surface. *3 *4

The H280K or higher are not equipped with FR-HCB2. A filter capacitor and inrush current limit resistors are provided instead.

Specification and Structure Substantially suppresses power harmonics to obtain the equivalent capacity conversion coefficient K5 = 0 specified in "the Harmonic

H160K

02160

(90K)

03610

(160K)

290

S

190

270

400

190

270

300

350

400

H220K

02600

(110K)

04810

(220K)

397

Outside box

FR-HCB2*4

н

320

450

450

320

450

350

450

450

Outside box

n

8)

W

H280K

03610

(160K)

06100

(280K)

506

D

165

203

250

165

203

250

380

440

to

H400K

04810

(220K)

08660

(400K)

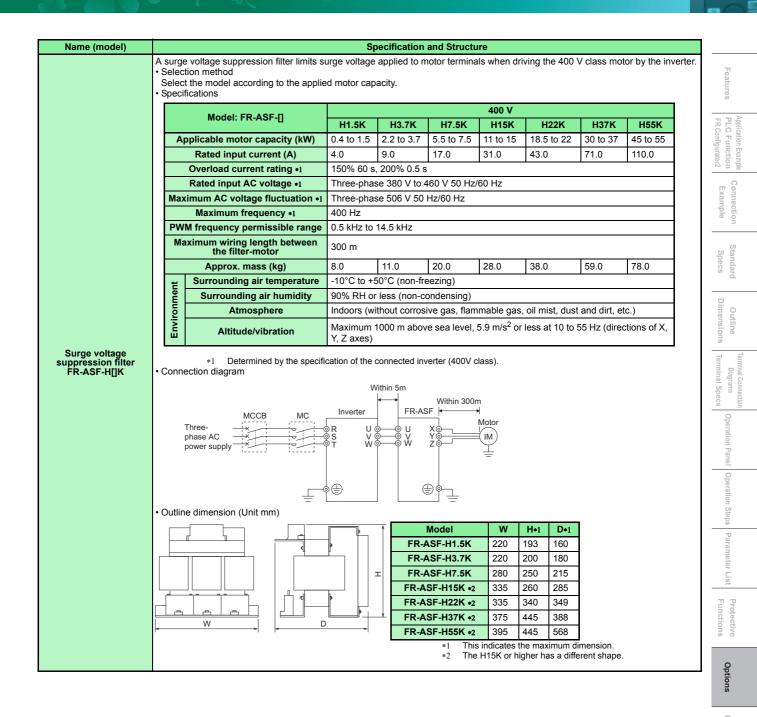
716

to

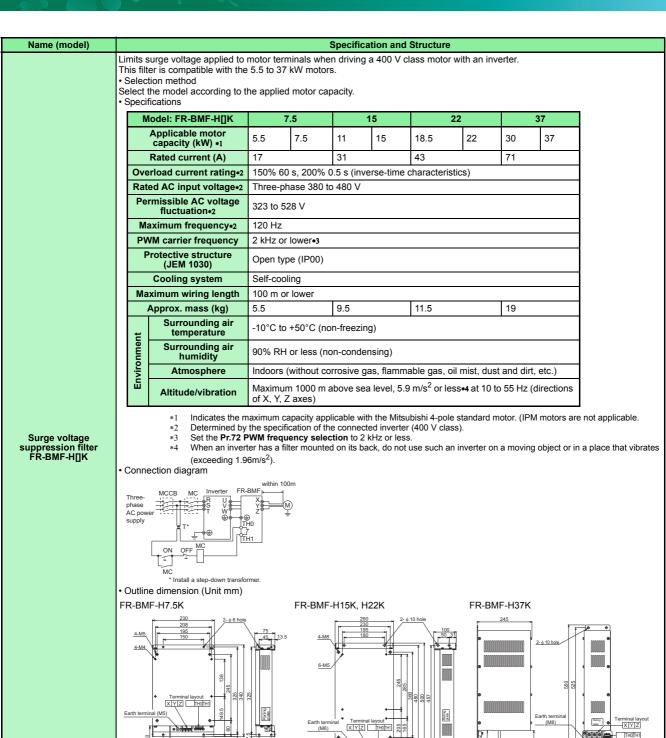
H560K

06100

(280K)


12120

(560K)


993

to

Motors

al block (M6)

:k (M3)

(Unit: mm)

ng terminal: 8-6

ock (M3)

(Unit: mm)

ιQ.

2.

bing terminal 5.5-4

nal block (M3)

(Unit: mm)

Name (model)					Snr	ecificatio	n and	Struc	*									
		filter application ve filter can be instal	elled to a	adjust the							to he :	sine w		Insta	II a sin	e wave	e filter to	
	the output s higher.	side of the inverter .	. This fi	filter is cor	mpatible	e with the	e FR-F8	820-03	3160((75K) c	or high	her an	nd the	FR-F	840-0	1800(7	′5K) or	Features
	operation w	uct is available only with a sine wave pow stic equivalent to the	wer sup	pply and a	also will	l provide t	the follo	owing	bene	efits. A	A sine	wave	filter v	will bri	ing op	eration		
	(a)	Low noise No surge current			3 5010	/ave po	31 Supp	Jly an.	û a	יייוע C)[Uviu	euro	1011011	lliy	Blenc	j.		Application Example PLC Function FR Configurator2
	(c) • Operating c	Small motor losse condition	es (for a															xample ction irator2
		ing settings and con Set "25" in Pr.72 . This setting chang	(The in	nitial value	e is "2".))				filtor jr	dagi	od	the	2091		- ~f 2 5	-1-11-7	Connection Example
		carrier frequency. sine wave filter.	Always	s change	this set	tting.) The	e opera	ation w	vith Pı	Pr.72 =	= "25" s	setting	g may	/ dama	age inv			nple
		A sine wave filter It cannot be used for It is applicable on	for the o	operation v	with high	her freque	ency. (U	Jsing it	t with t	the hig	igher fr	requen	ncy wil	ll incre		the filter	r loss.)	s ta
	(d)	It is applicable onl When using the si figuration and conne	sine wav								JUTOIN	atican	y Sei.)				Standard Specs
	Inverter		vave filter															D
	(Carrier 2.5kHz)	Reactor		- 0 - 0 - 1 - 1 - 1 - 1	Moto													Outline Dimensions
	+ 0		tor (Car	pacitor)	age	~												
	- Inverter outpu voltage wave form	For a capacitor ca with size larger th	cable, use a than indicate	a cable ted in the	Wave	ve form at a												Diagrams Terminal Specs
	Motor	table below "reco size ".		d cable	more	or terminal		_	_		_							
	Motor capacity (kW)	Reactor for f		Capaci	itor for		App	licable	e inv	erter								Operatic
	200 V 75 90	MT-BSL-90K		1×MT-E	BSC-75)K		_	_	_	7							Operation Panel
	75 90	MT-BSL-H110K	(-HC)	1×MT-E	BSC-H7 BSC-H1	110K	Select a											
o'	110 132	2 MT-BSL-H150K	(-HC)	2×MT-E	BSC-H1 BSC-H7	110K t 75K *	the rate 1.1 will	ed mot I be 90'	tor cu)% or	urrent⇒ r less o	×							Operation Steps
Sine wave filter MT-BSL-(H)[]K MT-BSC-(H)[]K	400 V 160 185	5 MT-BSL-H220K	(-HC)	2×MT-E	BSC-H1 BSC-H1	110K	the inve current		ateu									
	220 250 280	MT-BSL-H280K	(-HC)	3×MT-E	BSC-H1 BSC-H1	110K					*1	ins	stall the	em in p	parallel		oacitors, own in the	Parameter List
	Reactor for	0 MT-BSL-H280K((-HC)	3×M⊥-⊾	BSC-H1	10K							ring dia				-	
		Terminal H	Rating p	blate		Mode	el 🛛		Α	в	С	D	Е	F	G	н	Mass (kg)	Protect Functio
			Í		200 V	MT-BS					285	185	216	328	M10		80	tective
	x X	Ý ŻO				MT-BS	L-H75K	(3	330	150	320 285	180 185	220 216	330 318	M12 M10	M10	120 80	Opt
						MT-BSL-H	H110K	к 3	390	150	340		216 235	315 368	M10 M12	M12		Options
	4-G installation		E F		>	MT-BSL-H	H150M	K 4	455	200	397	200	235 240	370 380	M12 M12	M12	190	LVS
		eye nut after installatio		e product.		MT-BSL-H	H220k	K 4	495	200	405	390 250	430 300	500 420	M12 M12	M12	240	LVS/Cables
		mple of the outer appea s depending on the mod	-			MT-BSL-H MT-BSL	H280M	K 5	575	200	470	430 310	485 370	555 485 620	M12 M12	M12	340	
						IT-BSL-H						475	535	620	M12	M12	480	Precautions
		for sine wave filter		Mode	1	A	В	С	D	DE	F	G	Н		M	ass (kg	~\	suc
			200 V	MT-BS	SC-75K	207	191	285	233	33 72	2 41	45	φ7	M8	3.9	9	3)	Motors
			>		SC-90K C-H75K		266 191	240 220					φ7 φ7	M12 M6			\neg	S.I.C
			400	MT-BSC	C-H110	K 207	191	280	233	33 72	2 41	55	φ7	M6				Comp
			 Reco 	n installing ommended gauge of t	d cable	e gauge					·			- N/T_[רפו ar	ad indu	otion	Compatibility
		4-H /Installation hole	moto	gauge of t or varies a e following	accordir	ing to U, V	V, and V	W as ir	indica	ated or	on page	je 99.				יום ווועשי	Ction	
				IT-BSC-75	5K	MT-BS0 38 mm ²		Ň		BSC-H			T-BSČ					Warranty Inquiry
	L					0		<u>_</u>			_		<u></u>		_			`

Mitsubishi Molded Case Circuit Breakers and Earth Leakage Circuit Breakers WS-V **Series**

"WS-V Series" is the new circuit breakers that have a lot of superior aspects such as higher breaking capacity, design for easy use, standardization of accessory parts, and compliance to the global standards.

Technologies based on long years of experience are brought together to achieve improved performance

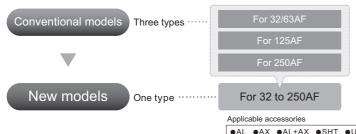
The new circuit breaking technology "Expanded ISTAC" has improved the

currentlimiting performance and upgraded the overall breaking capacity. Expansion of the conductor under the stator shortens the contact parting time of the mover as compared to the conventional ISTAC structure.

The current-limiting performance has been improved remarkably. (The maximum peak current value has been reduced by approx. 10%.)

· Compact design for ease of use

The thermal adjustable circuit breakers and electronic circuit breakers are smaller.



(Conventional model) . 105 × 165 × 86 mm)

(New model) 105 × 165 × 68 mm)

 Types of internal accessories are reduced from 3 types to 1 type Standardization of internal accessories contributes to a reduction of stock and delivery time.

Lineup of UL 489 listed circuit breakers with 54 mm width "Small Fit" [F) Style

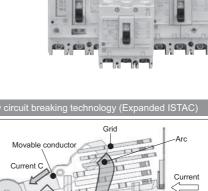
The compact breakers contribute to a size reduction of machines, and IEC 35 mm rail mounting is standard.

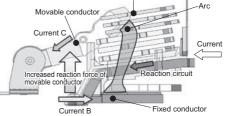
For security and standard compliance of machines, F-type and Vtype operating handles are available for breakers with 54 mm width.

NF50-SVFU

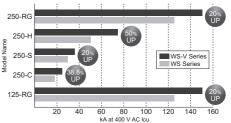
The breaking capacity has been improved to satisfy the request for SCCR upgrading.

NF250-SVU


Breaking capacity of UL 489 listed circuit breakers for 480 V AC (UL 489)


NF125-SVU/NV125-SVU	.30	kA
NF125-HVU/NV125-HVU	.50	kΑ
NF250-SVU/NV250-SVU	.35	kΑ
NF250-HVU/NV250-HVU	50	kΑ

NF125-SVU	
-----------	--


NF125-HVU

NF250-HVU

Breaking capacity comparison with a conventional model

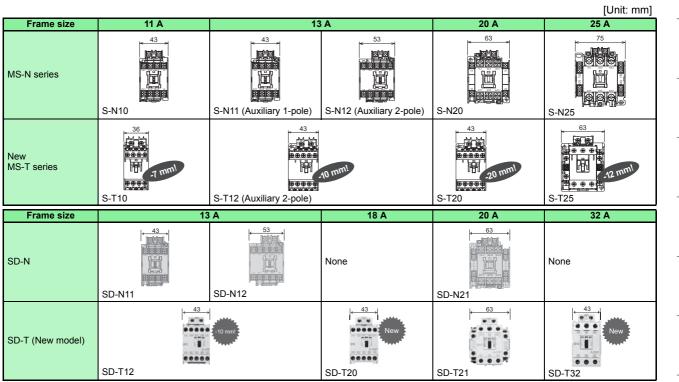
//O (OE 400)	
NF125-SVU/NV125-SVU	30 kA
NF125-HVU/NV125-HVU	50 kA
NF250-SVU/NV250-SVU	35 kA
NF250-HVU/NV250-HVU	50 kA

Mitsubishi Magnetic Motor Starters and Magnetic Contactors MS-T Series

MS-T series is newly released.

The MS-T series is smaller than ever, enabling more compact control panel. The MS-T series is suitable for other Mitsubishi FA equipment. In addition, the MS-T conforms to a variety of global standards, supporting the global use. DC operated SD-T magnetic contactors (13 A frame to 32 A frame) are now available.

Features


Compact

The width of the 10 A-frame model is as small as 36 mm.

General-purpose magnetic contactor with smallest width*1 in the industry.

The width of MS-T series is reduced by 32% as compared to the prior MS-N series, enabling a more compact panel. For selection, refer to page 99

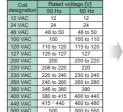
Based on Mitsubishi Electric research as of February 2015 in the general-purpose magnetic contactor industry for 10 A-frame class

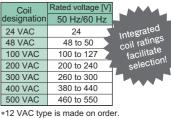
Standardization

Covers provided as standard equipment

Safety improvement is achieved by the standard terminal cover. It is not necessary for the new MS-T series to order a dedicated terminal cover (S-N[]CX) or a retrofit cover (UN-CW, etc.), which is required for the former MS-N series. (Prevention of failure to order) The number of items in stock can be reduced.

The standard integrated terminal cover eliminates the need for additional ordering.


(Conventional product)


(MS-T series)

Widened range of operation coil ratings (AC operated model) The widened range reduces the number of operation coil rating types from 14 (MS-N series) to 7.

The reduced number of the operation coil types enables more simplified customers' ordering process and the faster delivery. Customers can select the operation coil more easily.

(MS-T series) (Conventional product)

- Global Standard
- Conforms to various global standards
- Not only major global standards such as IEC, JIS, UL, CE, and CCC but also ship standards and other country standards are planned to be certified.
- Conforms to various global standards

	4	Applicable Standa	ard		Safety Standard
International	Japan	Eur	ope	China	U.S.A./ Canada
		EN	Certification	CP	
150		EC Directive	body	GB	
IEC*1	JIS	CE	\square		c (UL) us
	International	International Japan	International Japan Eur EN EC Directive	IEC.1 JIS	International Japan Europe China IEC*1 JIS EN Certification body GB IEC*1 JIS EC Directive Certification body GB

*1 The MS-T series also provide safe isolation (mirror contact) specified in the IEC standard.

The motor starters are certified under each type name of the magnetic contactors and the thermal overload relays on the condition that the magnetic *2 contactors and the thermal overload relays are used in combination.

96

.

S-T10

Protective

LVS/Cables

Motors

Environment-friendly Mitsubishi MS-N series ensures safety and conforms to various global standards. Its compact size contributes to space-saving in a machine. The MS-N series is suitable for other Mitsubishi FA equipment and can be used globally.

Features

Bifurcated contact adopted to achieve high contact reliability

Contact reliability is greatly improved by combining bifurcated moving contact and stationary contact. This series responds to the various needs such as the application to safety circuit. (The MS-T series also has bifurcated contacts.)

Mirror contact (auxiliary contact off at main contact welding)

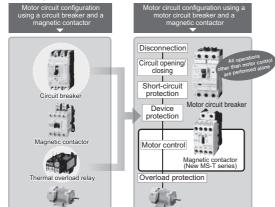
The MS-N series meets requirements of "Control functions in the event of failure" described in EN 60204-1 "Electrical equipment of machines", being suitable as interlock circuit contact. The MS-N series is applicable for category 4 safety circuit. We ensure safety for our customers. (The MS-T series also has mirror contacts.)

Various option units

Various options including surge absorbers and additional auxiliary contact blocks are available.

Motor Circuit Breaker MMP-T Series

Motor circuit protection (against overload / phase loss / short-circuit) is achievable the MMP-T series alone.


The wire-saving, space-saving design enables downsizing of the enclosure.

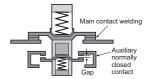
The MMP-T series can be used in combination with the MS-T series (DC operated model).*1 *1 The connection conductor unit for the DC operated compact model (SD-T) is to be released soon.

Features

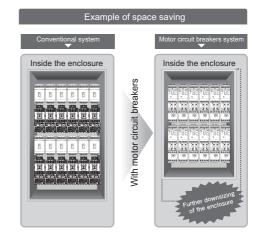
• What is the motor circuit breaker?

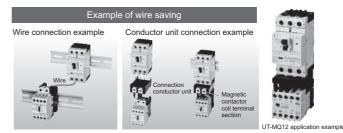
The motor circuit breaker, applicable to the motor circuit, has the functions of a circuit breaker and a thermal overload relay in one unit. The motor circuit breaker provides protection against overload, phase loss, and short circuit.

Wire saving


Using a connection conductor unit (option) for connecting a motor circuit breaker and a contactor reduces work hours required for wiring.

A connection conductor unit for the high sensitivity contactor (SD-Q) is also available. (Model: UT-MQ12)





• Space-saving design for downsizing of the enclosure

· Compliance to major standards support customers' overseas business

Compliance with major global standards

Not only major international standards such as IEC, JIS, UL, CE, and CCC but also other national standards are certified. This will help our customers expand their business in foreign countries.

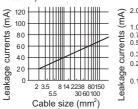
		A	Applicable Standa	rd		Safety Standard
	International	Japan	Eur	оре	China	U.S.A./ Canada
			EN	Certification	GB	
Standard	IEC	JIS	EC Directive	body	5	(III)
	IEC	313	((c (ŲL) us
				TUV Rheinland	(m)	

UL60947-4-1A Type E/F is also covered

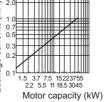
Compliance of the device to UL's Type E/F combination can surely support export to the United States.

PLC

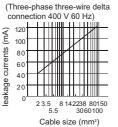
Selecting the rated sensitivity current for the earth leakage circuit breaker

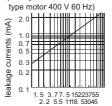

When using an earth leakage circuit breaker with the inverter circuit, select its rated sensitivity current as follows, independently of the PWM carrier frequency.

- Breaker designed for harmonic and surge suppression Rated sensitivity current
- $I\Delta n \ge 10 \times (Ig1+Ign+Igi+Ig2+Igm)$ Standard breaker
- Rated sensitivity current
- $I\Delta n \ge 10 \times \{Ig1 + Ign + Igi + 3 \times (Ig2 + Igm)\}$
- Ig1, Ig2: Leakage currents in wire path during commercial power supply operation
- Ign: Leakage current of inverter input side noise filter
- Igm: Leakage current of motor during commercial power supply operation


Igi: Leakage current of inverter unit

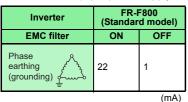
Example of leakage current of cable path per 1km during the commercial power supply operation when the CV cable is routed in metal conduit


(200 V 60 Hz)


Leakage current example of three-phase induction motor during the commercial power supply operation (200 V 60 Hz)

Example of leakage current per 1km during the commercial power supply operation when the CV cable is routed in metal conduit

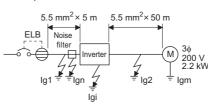
Leakage current example of threephase induction motor during the commercial power supply operation (Totally-enclosed fan-cooled



For " / connection, the amount of leakage current is appox.1/3 of the above value.

Inverter/converter unit leakage current

200 V class (Input power supply conditions: 220 V / 60 Hz, power supply unbalance: within 3%)


Motor capacity (kW)

400 V class (Input power supply conditions: 440 V / 60 Hz, power supply unbalance: within 3%)

Inverter/	FR-	-800	FR-F802	Converter unit FR-CC2				
converter unit	(Standar	d model)	(Separated converter type)	H355K		H400K to H630K		
EMC filter	ON	OFF	—	ON	OFF	ON	OFF	
Phase earthing (grounding)	35	2	2	35	2	70	2	
Earthed-neutral system	2	1	1	2	1	2	1	

<Example>

- (a) Install the earth leakage circuit breaker (ELB) on the input side of the inverter.
- In the \wedge connection earthed-neutral system, the sensitivity current (b) is blunt against a ground fault in the inverter output side. Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 536 class 1 and other applicable standards)

Selection example (in the case of the above figure)

	Breaker designed for harmonic and surge suppression	Standard breaker			
Leakage current lg1 (mA)	$33 \times \frac{5 \text{ m}}{1000 \text{ m}} = 0.17$				
Leakage current Ign (mA)	0 (without noise filter)				
Leakage current Igi (mA)	1 (without EMC filter) Refer to the following table for the leakage current of the inverter.*1				
Leakage current lg2 (mA)	33× <u>5</u> 10	0 m 00 m =1.65			
Motor leakage current Igm (mA)	0.18				
Total leakage current (mA)	3.00 6.66				
Rated sensitivity current (mA) (≥lg × 10)	30 100				

For whether to use the EMC filter or not, refer to the Instruction Manual *1 (Detailed).

Step

ope

315K or lower

	Motor	Applicable inverter	Molded case circuit leakage circuit br	breaker (MCCB) +2 or earth eaker (ELB) (NF, NV type)		e magnetic actor•₃		nmended uge (mm ²) +4
Voltage	output (kW) *1	(LD rating)		roving (AC or DC) reactor onnection		improving (AC or connection	R/L1, S/L2,	U, V, W
			Without	With	Without	With	T/L3	
	0.75	FR-F820-00046(0.75K)	10A	10A	S-T10	S-T10	2	2
	1.5	FR-F820-00077(1.5K)	15A	15A	S-T10	S-T10	2	2
	2.2	FR-F820-00105(2.2K)	20A	15A	S-T10	S-T10	2	2
	3.7	FR-F820-00167(3.7K)	30A	30A	S-T21	S-T10	3.5	3.5
	5.5	FR-F820-00250(5.5K)	50A	40A	S-T25	S-T21	5.5	5.5
	7.5	FR-F820-00340(7.5K)	60A	50A	S-N35	S-T25	14	8
	11	FR-F820-00490(11K)	75A	75A	S-N35	S-N35	14	14
200 V	15	FR-F820-00630(15K)	125A	100A	S-N50	S-N50	22	22
200 V class	18.5	FR-F820-00770(18.5K)	150A	125A	S-N65	S-N50	38	38
	22	FR-F820-00930(22K)	175A	125A	S-N80	S-N65	38	38
	30	FR-F820-01250(30K)	225A	150A	S-N95	S-N80	60	60
	37	FR-F820-01540(37K)	250A	200A	S-N150	S-N125	80	80
	45	FR-F820-01870(45K)	300A	225A	S-N180	S-N150	100	100
	55	FR-F820-02330(55K)	400A	300A	S-N220	S-N180	100	100
	75	FR-F820-03160(75K)	-	400A	-	S-N300	125	125
	90	FR-F820-03800(90K)	-	400A	-	S-N300	150	150
	110	FR-F820-04750(110K)	-	500A	-	S-N400	150	150
	0.75	FR-F840-00023(0.75K)	5A	5A	S-T10	S-T10	2	2
	1.5	FR-F840-00038(1.5K)	10A	10A	S-T10	S-T10	2	2
	2.2	FR-F840-00052(2.2K)	10A	10A	S-T10	S-T10	2	2
	3.7	FR-F840-00083(3.7K)	20A	15A	S-T10	S-T10	2	2
	5.5	FR-F840-00126(5.5K)	30A	20A	S-T21	S-T12	2	2
	7.5	FR-F840-00170(7.5K)	30A	30A	S-T21	S-T21	3.5	3.5
	11	FR-F840-00250(11K)	50A	40A	S-T21	S-T21	5.5	5.5
	15	FR-F840-00310(15K)	60A	50A	S-N35	S-T21	8	8
	18.5	FR-F840-00380(18.5K)	75A	60A	S-N35	S-N35	14	8
	22	FR-F840-00470(22K)	100A	75A	S-N35	S-N35	14	14
	30	FR-F840-00620(30K)	125A	100A	S-N50	S-N50	22	22
	37	FR-F840-00770(37K)	150A	100A	S-N65	S-N50	22	22
400 V class	45	FR-F840-00930(45K)	175A	125A	S-N80	S-N65	38	38
01000	55	FR-F840-01160(55K)	200A	150A	S-N80	S-N80	60	60
	75	FR-F840-01800(75K)	-	200A	-	S-N95	60	60
	90	FR-F840-02160(90K)	-	225A	-	S-N150	60	60
	110	FR-F840-02600(110K)	-	225A	-	S-N180	80	80
	132	FR-F840-03250(132K)	-	350A	-	S-N220	100	100
	150	FR-F840-03610(160K)	-	400A	-	S-N300	125	150
	160	FR-F840-03610(160K)	-	400A	-	S-N300	125	150
	185	FR-F840-04320(185K)	-	400A	-	S-N300	150	150
	220	FR-F840-04810(220K)	-	500A	-	S-N400	2×100	2×100
	250	FR-F840-05470(250K)	-	600A	-	S-N600	2×100	2×100
	280	FR-F840-06100(280K)	-	600A	-	S-N600	2×125	2×125
	315	FR-F840-06830(315K)	-	700A	-	S-N600	2×150	2×150

Assumes the use of an IPM motor MM-EFS, MM-THE4 or a Mitsubishi 4-pole standard motor with the motor capacity of 200 VAC 50 Hz. Select an MCCB according to the power supply capacity. *2 Install one MCCB per inverter. MCCB

For the use in the United States or Canada, provide the appropriate UL and cUL listed fuse or UL489 molded case circuit breaker (MCCB) that is suitable for branch circuit protection. (Refer to the Instruction Manual (Detailed).)

MCCB

INV

INV

Μ

M`

. . . .

The magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stops during motor driving, the electrical durability is 25 times.

If using an MC for emergency stop during motor driving or using it on the motor side during commercial power supply operation, select an MC with the class AC-3 rated current for the rated motor current.

*4 Cables

*3

For FR-F820-02330(55K) or lower and FR-F840-01160(55K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of 75°C. (HIV cable (600 V grade heat-resistant PVC insulated wire), etc.) It assumes a surrounding air temperature of 50°C or lower and the wiring distance of 20 m or shorter.

For FR-F820-03160(75K) or higher and FR-F840-01800(75K) or higher, it is the gauge of the cable with the continuous maximum permissible temperature of 90°C or higher. (LMFC (heat resistant flexible cross-linked polyethylene insulated cable), etc.) It assumes a surrounding air temperature of 50°C or lower and in-enclosure wiring.

• NOTE

· When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model, and select cables and reactors according to the motor output.

• When the breaker on the inverter's input side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.

355K or higher

				Molded case circuit breaker	(MCCB)+2		bles, etc. (mm ²)+4
Voltage	Motor output (kW)+1	Applicable inverter model (LD rating)	Applicable converter model	earth leakage circuit breaker (ELB) (NF, NV type)	Input-side magnetic contactor+3	R/L1, S/L2, T/L3	P/+, N/-	U, V, W
	355	FR-F842-07700(355K)	FR-CC2-H355K	800A	S-N600	2×200	2×150	2×200
	400	FR-F842-08660(400K)	FR-CC2-H400K	900A	S-N800	2×200	2×200	2×200
	450	FR-F842-09620(450K)	FR-CC2-H450K	1000A	1000A rated product	2×250	2×200	2×250
400 V class	500	FR-F842-10940(500K)	FR-CC2-H500K	1200A	1000A rated product	3×200	2×250	2×250
	560	FR-F842-12120(560K)	FR-CC2-H560K	1500A	1200A rated product	3×200	3×200	3×200
	630	FR-F842-12120(560K) *5	FR-CC2-H630K	2000A	1400A rated product	3×200	3×200	3×200

*1 Assumes the use of a Mitsubishi 4-pole standard motor with the motor capacity of 400 VAC 50 Hz.

*2 Select an MCCB according to the power supply capacity.

Install one MCCB per converter. For the use in the United States or Canada, provide the appropriate UL and cUL listed fuse or UL489 molded case circuit breaker (MCCB) that is suitable for branch circuit protection. (Refer to the Instruction Manual (Detailed) of the inverter.)

MCCB+Converter unit+INV+(M)

*3 The magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stops during motor driving, the electrical durability is 25 times. If using an MC for emergency stop during driving the motor, select an MC regarding the converter unit input side current as JEM1038-AC-3 class rated current. When using an MC on the inverter output side for commercial-power supply operation switching using a general-purpose motor, select an MC

regarding the rated motor current as JEM1038-AC-3 class rated current. *4 The gauge of the cable with the continuous maximum permissible temperature of 90°C or higher. (LMFC (heat resistant flexible cross-linked polyethylene insulated cable), etc.). It assumes a surrounding air temperature of 40°C or lower and in-enclosure wiring.

*5 This can be used when the SLD rating is selected for the FR-F842-12120(560K).

• NOTE

- When the converter unit capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the converter unit model, and select cables and reactors according to the motor output.
- When the breaker on the converter unit's input side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter and the converter unit, etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.

Features A

Function Function

Connection Example

Itandard

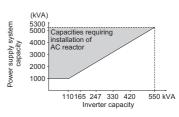
Specs

Precautions for use

Safety instructions

- To use the product safely and correctly, make sure to read the "Instruction Manual" before the use.
- This product has not been designed or manufactured for use with any equipment or system operated under life-threatening conditions.
- Please contact our sales representative when considering using this product in special applications such as passenger mobile, medical, aerospace, nuclear, power or undersea relay equipment or system.
- Although this product was manufactured under conditions of strict quality control, install safety devices to prevent serious accidents when it is used in facilities where breakdowns of the product or other failures are likely to cause a serious accident.
- Do not use the inverter for a load other than the three-phase induction motor and the PM motor.
- Do not connect a PM motor in the induction motor control settings (initial settings). Do not use an induction motor in the PM motor control settings. It will cause a failure.
- When using an IPM motor (MM-EFS, MM-THE4), also refer to the precautions for use of the IPM motors (MM-EFS, MM-THE4).

Operation


- When a magnetic contactor (MC) is installed on the input side, do not use the MC for frequent starting/stopping. Otherwise the inverter may be damaged.
- When a fault occurs in the inverter, the protective function is acticvated to stop the inverter output. However, the motor cannot be immediately stopped. For machinery and equipment that require an immediate stop, provide a mechanical stop/holding mechanism.
- Even after turning OFF the inverter/the converter unit, it takes time to discharge the capacitor. Before performing an inspection, wait 10 minutes or longer after the power supply turns OFF, then check the voltage using a tester, etc.
- When the emergency drive operation is performed, the operation is continued or the retry is repeated even when a fault occurs, which may damage or burn the inverter and motor. Before restarting the normal operation after using this function, make sure that the inverter and motor have no fault.

Wiring

- Applying the power to the inverter output terminals (U, V, W) causes a damage to the inverter. Before power-on, thoroughly check the wiring and sequence to prevent incorrect wiring, etc.
- Terminals P/+, P1, N/-, and P3 are the terminals to connect dedicated options or DC power supply (in the DC feeding mode). Do not connect any device other than the dedicated options or DC power supply (in the DC feeding mode). Do not short-circuit between the frequency setting power supply terminal 10 and the common terminal 5, and between the terminals PC and SD.
- To prevent a malfunction due to noise, keep the signal cables 10cm or more away from the power cables. Also, separate the main circuit cables at the input side from the main circuit cables at the output side.
- After wiring, wire offcuts must not be left in the inverter/the converter unit. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter/the converter unit clean. When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter/ the converter unit.
- Set the voltage/current input switch correctly. Incorrect setting may cause a fault, failure or malfunction.

Power supply

 When the inverter is connected near a large- capacity power transformer (1000 kVA or more) or when a power factor correction capacitor is to be switched over, an excessive peak current may flow in the power input circuit, damaging the

inverter. To prevent this, always install an optional AC reactor (FR-HAL).

 If surge voltage occurs in the power supply system, this surge energy may flow into an inverter, and the inverter may display the overvoltage protection (E. OV[]) and trip. To prevent this, install an optional AC reactor (FR-HAL).

Installation

- Install the inverter in a clean place with no floating oil mist, cotton fly, dust and dirt, etc. Alternatively, install the inverter inside the "sealed type" enclosure that prevents entry of suspended substances. For installation in the enclosure, decide the cooling method and the enclosure size to keep the surrounding air temperature of the inverter/the converter unit within the permissible range (for specifications, refer to page 18).
- Some parts of the inverter/the converter unit become extremely hot. Do not install the inverter/the converter unit to inflammable materials (wood etc.).
- · Attach the inverter vertically.

Setting

- Depending on the parameter setting, high-speed operation (up to 590 Hz) is available. Incorrect setting will lead to a dangerous situation. Set the upper limit by using the upper frequency limit setting.
- Setting the DC injection brake operation voltage and operating time larger than their initial values causes motor overheating (electronic thermal O/L relay trip).

Precautions for use of IPM motor (MM-EFS, MM-THE4)

When using the IPM motor (MM-EFS, MM-THE4), the following precautions must be observed as well.

Safety instructions

 Do not use an IPM motor for an application where the motor is driven by the load and runs at a speed higher than the maximum motor speed.

Combination of motor and inverter

- Use the same IPM motor capacity as the inverter capacity.
- Only one IPM motor can be connected to an inverter.
- An IPM motor cannot be driven by the commercial power supply.

Installation

- While power is ON or for some time after power-OFF, do not touch the motor since the motor may be extremely hot. Touching these devices may cause a burn.
- The following table indicates the available installation orientations.

	Simplified d	Frame number liagram	80M to 180L	200L to 280MD
Floor	Terminal direction A		⊙	•
*1	Terminal direction B		0	0
	Shaft going up		Δ	×
Wall installation +2	Shaft horizontal		⊚	×
	Shaft going down		⊚	×
Ceiling installation	Ceiling installation		•	×

 ${\small \odot} Standard models can be installed as they are.$

OThis can be used by an easy replacement.

 $\Delta This$ is supported by a dedicated product.

 $\times \mbox{Not}$ available as installation strength is insufficient.

- *1 The floor installation condition is applicable to a slope of up to
- 30°. If the slope is steeper, apply the wall installation condition.
 To install a horizontal motor to a wall, first attach a shelf that supports the motor legs.

♦ Wiring

- Applying the commercial power supply to input terminals (U,V, W) of a motor will burn the motor. The motor must be connected with the output terminals (U,V, W) of the inverter.
- An IPM motor is a motor with permanent magnets embedded inside. High voltage is generated at the motor terminals while the motor is running. Before wiring or inspection, confirm that the motor is stopped.

In an application, such a as fan or blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise an electric shock may be caused. The inverter power must be turned ON before closing the contacts of the contactor at the output side.

 Match the input terminals (U, V, W) of the motor and the output terminals (U, V, W) of the inverter when connecting. Use the following length of wiring or shorter when connecting an IPM motor.

Voltage class	Pr.72 setting (carrier frequency)	or lower	FR-F820-00105(2.2K) or higher FR-F840-00052(2.2K) or higher
200 V	0 (2 kHz) to 15 (14 kHz)	100 m	100 m
	5 (2 kHz) or lower	100 m	100 m
400 V	6 to 9 (6 kHz)	50 m	100 m
	10 (10 kHz) or higher	50 m	50 m

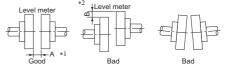
Use one dedicated IPM motor for one inverter. Multiple IPM motors cannot be connected to an inverter.

Operation

- About 0.1 s (magnetic pole detection time) takes to start a motor after inputting a start signal.
- An IPM motor is a motor with embedded permanent magnets. Regression voltage is generated when the motor coasts at an instantaneous power failure or other incidents. The inverter's DC bus voltage increases if the motor coasts fast in this condition. When using the automatic restart after instantaneous power failure function, it is recommended to also use the regeneration avoidance operation to make startups stable.
- The number of IPM motor poles differs by the capacity. Thus, the relation between the rotation speed and the frequency setting is:

Rotation speed = 120 × frequency setting value number of motor poles

	Free	quency setting value	e [Hz]			
Speed [r/min]	MM	MM-EFS				
	0.75kW to 15kW	18.5kW to 55kW	75kW to 160kW			
300	15	20	15			
600	30	40	30			
900	45	60	45			
1200	60	80	60			
1500	75	100	75			
1800	90	120	90			
2250	112.5	150	*2			
2400	*1	*1	*2			
2700	-*1	*1	*2			


*1 The maximum speed of MM-EFS is 2250 r/min. *2 The maximum speed of MM-THE4 is 1800 r/min.

■2 The maximum speed of MM-THE4 is 1800 r/min

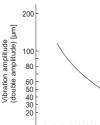
Connection with machine

Direct connection

• When installing, align the motor shaft center and the machine shaft. Insert a liner underneath the motor or the machine legs as required to make a perfect alignment.

*1 Set so that the A dimensions become the same dimension even when any position is measured by feeler gauge. (inequality in A width 3/100 mm or lower (2.5/100 mm or lower for MM-THE4))
*2 Do not set parts with a vertical gap like B. (2.5/100 mm or lower for MM-THE4).

• NOTE


 When a fan or blower is directly connected to the motor shaft or to the machine, the machine side may become unbalanced. When the unbalanced degree becomes larger, the motor vibration becomes larger and may result in a damage of the bearing or other area. The balance quality with the machine should meet the class G2.5 or lower of JISB0905 (the Balance Quality Requirements of Rigid Rotors).

Connected by belt

- When installing, place the motor shaft and the machine shaft in parallel, and mount them to a position where their pulley centers are aligned. Their pulley centers should also have a right angle to each shaft.
- An excessively stretched belt may damage the bearing and break the shafts. A loose belt may slip off and easily deteriorate. A flat belt should be rotated lightly when it is pulled by one hand. For details, refer to the Instruction Manual of the motor.
- For driving an 11 kW or higher MM-EFS motor connected to a belt, contact your sales representative.
- · Connected by gear couplings
- Place the motor and machine shafts in parallel, and engage the gear teeth properly.

Permissible vibration of the motor

 Bearing is subjected to fretting while the motor is stopped.
 Suppress the vibration to about the half of the permissible value.
 Amplitude at each vibration condition is as shown right.

500 1000 1500 2000 2250 Rotation speed [r/min]

‡Radial load

Thrust load

Permissible load of the shaft

MM-EFS⊡1M(4)	7	15	22	37	55	75	11K
L [mm] +1	40	50	60		80		110
Permissible radial load [N] +2	535	585	830	1070	1710		2150
Permissible thrust load [N] +2	470	500	695	900	1420		1810

MM-EFS□1M(4)	15K	18K	22K	30K	37K	45K	55K
L [mm] +1	110				140		
Permissible radial load [N] +2	2150	2940		3230	4900		5880
Permissible thrust load [N] +2	1810	2350		2740	2940		2740

	Capacities	75kW	90kW	110kW	132kW	160kW
MM-THE4	Frame number	250MA	250MD	280MD	280MD	280MD
Permissible [N] +		3600	3600	4600	4600	4600
Permissible [N]		3900	3900	5000	5000	5000

- *1 For the symbols used in the table, refer to the diagram at right.
- *2 The permissible radial load and the permissible thrust load are the permissible values when they are applied individually.

*3 The loading point of the radial load is calculated at a tip of the shaft. Connecting by belt is available using an option. For the permissible radial load connected by belt, contact the nearest Mitsubishi FA center.

Selection precautions

Inverter capacity selection

 When operating a special motor or multiple motors in parallel by one inverter, select the inverter capacity so that 1.05 times of the total of the rated motor current becomes less than the rated output current of the inverter.

(Multiple PM motors cannot be connected to an inverter.)

Starting torque of the motor

 The starting and acceleration characteristics of the motor driven by an inverter are restricted by the overload current rating of the inverter. In general, the torque characteristic has small value compared to when the motor is started by a commercial power supply. When a large starting torque is required, and torque boost adjustment, and Advanced magnetic flux vector control cannot generate the sufficient torque, increase both the motor and inverter capacities.

Acceleration/deceleration time

- The motor acceleration/deceleration time is decided by the torque generated by the motor, load torque, and moment of inertia (J) of load.
- The required time may increase when the torque limit function or stall prevention function operates during acceleration/ deceleration. In such a case, set the acceleration/decelerations time longer.
- To shorten the acceleration/deceleration time, increase the torque boost value (too large setting value may activate the stall prevention function, resulting in longer acceleration time at starting on the contrary). Alternatively, use Advanced magnetic flux vector control, or select the larger inverter and motor capacities. To shorten the deceleration time, use an addition brake unit (FR-BU2) to absorb braking energy, power regeneration common converter (FR-CV), or power supply regeneration unit (MT-RC), etc.

Power transfer mechanisms (reduction gear, belt, chain, etc.)

 Caution is required for the low-speed continuous operation of the motor with an oil lubricated gear box, transmission, reduction gear, etc. in the power transfer mechanism. Such an operation may degrade the oil lubrication and cause seizing. On the other hand, the high-speed operation at more than 60 Hz may cause problems with the noise of the power transfer mechanism, life, or insufficient strength due to centrifugal force, etc. Fully take necessary precautions.

Instructions for overload operation

When performing frequent starts/stops by the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Reducing current may extend the service life but may also cause torque shortage, which leads to a start failure. Adding a margin to the current can eliminate such a condition. For an induction motor, use an inverter of a higher capacity. For an IPM motor, use an inverter and IPM motor of higher capacities.

Precautions on peripheral device selection

Selection and installation of molded case circuit breaker

Install a molded case circuit breaker (MCCB) on the power receiving side to protect the wiring at the inverter/the converter unit input side. Select an MCCB according to the inverter power supply side power factor, which depends on the power supply voltage, output frequency and load. Refer to page 99. Especially for a completely electromagnetic MCCB, a slightly large capacity must be selected since its operation characteristic varies with harmonic currents. (Check the reference material of the applicable breaker.) As an earth leakage circuit breaker, use the Mitsubishi earth leakage circuit breaker designed for harmonics and surge suppression. (Refer to page 98.) When installing a molded case circuit breaker on the inverter

output side, contact the manufacturer of each product for selection

Handling of the input side magnetic contactor (MC)

For the operation using external terminals (using the terminal STF or STR), install the input-side magnetic contactor to prevent accidents due to automatic restart when the power is restored after power failures such as an instantaneous power failure, or for safety during maintenance works. Do not use this magnetic contactor for frequent starting/stopping of the inverter. (The switching life of the converter part is about 1 million times.) In the operation by parameter unit, the automatic restart after power restoration is not performed and the magnetic contactor cannot be used to start the motor. The input-side magnetic contactor can stop the motor. However, the regenerative brake of the inverter does not operate, and the motor coasts to a stop.

Handling of the output side magnetic contactor (MC)

- Switch the MC between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided to switch to a commercial power supply, for example, it is recommended to use the electronic bypass function Pr.135 to Pr.139
- Do not install a magnetic contactor at the inverter's output side when using a PM motor.

Installation of thermal relay

In order to protect the motor from overheating, the inverter has an electronic thermal O/L relay. However, install an external thermal overcurrent relay (OCR) between the inverter and motors to operate several motors or a multi-pole motor with one inverter. In this case, set 0 A to the electronic thermal O/L relay setting of the inverter. For the external thermal overcurrent relay, determine the setting value in consideration of the current indicated on the motor's rating plate and the line-to-line leakage current. (Refer to page 105.)

Self cooling ability of a motor reduces in the low-speed operation. Installation of a thermal protector or a use of a motor with built-in thermistor is recommended.

Output side measuring instrument

When the inverter-to-motor wiring length is long, especially for the 400 V class, small-capacity models, the meters and CTs may generate heat due to line-to-line leakage current. Therefore, choose the equipment which has enough allowance for the current rating.

When measuring and displaying the output voltage and output current of the inverter, use of the terminals AM and 5 output function of the inverter is recommended.

Disuse of power factor improving capacitor (power factor correction capacitor)

The power factor improving capacitor and surge suppressor on the inverter output side may be overheated or damaged by the harmonic components of the inverter output. Also, since an excessive current flows in the inverter to activate overcurrent protection, do not provide a capacitor and surge suppressor. To improve the power factor, use a power factor improving DC reactor (on page 84).

Connection between the converter unit and the inverter

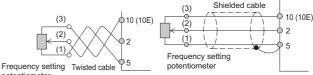
- Perform wiring so that the commands sent from the converter unit are transmitted to the inverter without fail. Incorrect connection may damage the converter unit and the inverter.
- For the wiring length, refer to the table below.

Total wiring length	Across the terminals P and P and the terminals N and N	50 m or lower
	Other signal cables	30 m or lower

For the cable gauge of the cable across the main circuit terminals P/+ and N/- (P and P, N and N), refer to page 100.

Cable gauge and wiring distance

If the wiring distance is long between the inverter and motor, during the output of a low frequency in particular, use a large cable gauge for the main circuit cable to suppress the voltage drop to 2% or less. (The table on page 99 indicates a selection example for the wiring length of 20 m.)


Especially for long-distance wiring or wiring with shielded cables, the inverter may be affected by a charging current caused by stray capacitances of the wiring, leading to an incorrect activation of the overcurrent protective function. Refer to the maximum wiring length shown in the following table. When multiple motors are connected, use the total wiring length shown in the table or shorter (100 m or shorter under PM motor control.)

Pr.72 setting (carrier frequency)	FR-F820- 00046(0.75K), FR-F840- 00023(0.75K)	FR-F840-	FR-F820-00105(2.2K) or higher, FR-F840- 00052(2.2K) or higher
2 (2 kHz) or lower	300 m	500 m	500 m
3 (3 kHz) or higher	200 m	300 m	500 m

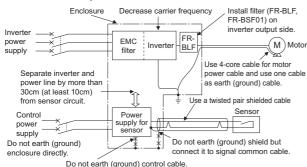
When the operation panel is installed away from the inverter and when the parameter unit is connected, use a recommended connection cable

For the remote operation using analog signals, keep the distance between the remote speed setter and the inverter to 30 m or less. Also, to prevent induction from other devices, keep the wiring away from the power circuits (main circuit and relay sequential circuit).

When the frequency setting is performed using the external potentiometer, not using the parameter unit, use a shielded or twisted cable as shown in the figure below. Connect the shield cable to the terminal 5, not to the earth (ground).

potentiometer

Earth (ground)


When the inverter is set for the low acoustic noise operation, the leakage current increases compared to in the normal operation due to the high speed switching operation. Always earth (ground) the inverter, the converter unit, and the motor. Also, always use the earth (ground) terminal of the inverter/the converter unit for earthing (grounding). (Do not use a case or chassis.)

Electromagnetic interference (EMI)

For the low acoustic noise operation with high carrier frequency, electromagnetic noise tends to increase. Take countermeasures by referring to the following examples. Depending on an installation condition, noise may affect the inverter also in the normal operation (initial status).

- Decrease the carrier frequency (Pr.72) setting to lower the EMI level.
- For countermeasures against the noise in AM radio broadcasting or malfunction of sensors, turn ON the EMC filter. (For the switching method, refer to the Instruction Manual.)
- For effective reduction of induction noise from the power cable of the inverter/the converter unit, secure the distance of 30 cm (at least 10 cm) from the power line and use a shielded twisted pair cable for the signal cable. Do not earth (ground) the shield, and connect the shield to a common terminal by itself.

EMI measure example

Ieakage current

Capacitances exist between the inverter/the converter unit I/O cables and other cables or the earth, and within the motor, through which a leakage current flows. Since its value depends on the static capacitances, carrier frequency, etc., low acoustic noise operation at the increased carrier frequency of the inverter will increase the leakage current. Therefore, take the following countermeasures. Select the earth leakage circuit breaker according to its rated sensitivity current, independently of the carrier frequency setting.

To-earth (ground) leakage currents

Туре	Influence and countermeasure
Influence and countermeasure	 Leakage currents may flow not only into the inverter/the converter unit's own line but also into the other lines through the earthing (grounding) cable, etc. These leakage currents may operate earth leakage circuit breakers and earth leakage relays unnecessarily. Countermeasure If the carrier frequency setting is high, decrease the Pr.72 PWM frequency selection setting. However, the motor noise increases. Selecting Pr.240 Soft-PWM operation selection makes the sound inoffensive. By using earth leakage circuit breakers designed for harmonic and surge suppression in the inverter's own line and other line, operation can be performed with the carrier frequency kept high (with low noise).
Transmission path	Power supply V2 NV2 NV2 NV2 Leakage breaker V2 Leakage breaker

• Line-to-line leakage current

Туре	Influence and countermeasure
Influence and countermeasure	 Line-to-line leakage current flows through the capacitance between the inverter/the converter unit output lines. Harmonic component of the leaked current may cause unnecessary operation of an external thermal relay. Long wiring length (50 m or longer) for the 400V class small capacity models (7.5 kW or lower) will increase the rate of leakage current against the rated motor current. In such a case, an unnecessary operation of the external thermal relay may be more liable to occur. Countermeasure Use Pr.9 Electronic thermal O/L relay. If the carrier frequency setting is high, decrease the Pr.72 PWM frequency selection makes the sound inoffensive. To protect motor securely without being subject to the influence of the line-to-line leakage current, direct detection of the motor temperature using a temperature sensor is recommended.
Transmission path	Power supply Inverter/ Line-to-line leakage currents path

Harmonic Suppression Guidelines

Inverters have a converter section (rectifier circuit) and generate a harmonic current.

Harmonic currents flow from the inverter to a power receiving point via a power transformer. The Harmonic Suppression Guidelines was established to protect other consumers from these outgoing harmonic currents.

The three-phase 200 V input specifications 3.7 kW or lower were previously covered by the "Harmonic Suppression Guidelines for Household Appliances and General-purpose Products" and other models were covered by the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage". However, the general-purpose inverter has been excluded from the target products covered by the "Harmonic Suppression Guidelines for Household Appliances and General-purpose Products" in January 2004 and the "Harmonic Suppression Guideline for Household Appliances and General-purpose Products" was repealed on September 6, 2004.

All capacity and all models of general-purpose inverter used by specific consumers are now covered by the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage".

 "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage"

This guideline sets the maximum values of outgoing harmonic currents generated from a high-voltage or specially high-voltage receiving consumer who will install, add or renew harmonic generating equipment. If any of the maximum values is exceeded, this guideline requires that consumer to take certain suppression measures.

The users who are not subjected to the above guidelines do not need follow the guidelines, but the users are recommended to connect a DC reactor and an AC reactor as usual.

Compliance with the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage"

Input power	Target capacity	Countermeasure
Three- phase 200 V		Confirm the compliance with the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage" published in September 1994 by the Ministry of International Trade and Industry (the present Japanese Ministry of Economy, Trade and
Three- phase 400 V	All capacities	Industry). Take countermeasures if required. Use the following materials as reference to calculate the power supply harmonics. Reference materials • "Harmonic Suppression Measures of the General-purpose Inverter" January 2004, Japan Electrical Manufacturers' Association • "Calculation Method of Harmonic Current of the General-purpose Inverter Used by Specific Consumers" JEM-TR201 (Revised in December 2003), Japan Electrical Manufacturers' Association

For compliance to the "Harmonic Suppression Guideline of the General-purpose Inverter (Input Current of 20A or Less) for Consumers Other Than Specific Consumers" published by JEMA

Input power	Target capacity	Measures
Three- phase 200 V	3.7 kW or lower	Connect the AC reactor or DC reactor recommended in the Catalogs and Instruction Manuals. Reference materials • "Harmonic suppression guideline of the general- purpose inverter (input current of 20A or less)" JEM-TR226 (Published in December 2003), Japan Electrical Manufacturers' Association

Calculation of outgoing harmonic current

Outgoing harmonic current = fundamental wave current (value converted from received power voltage) × operation ratio × harmonic content

 Operation ratio: Operation ratio = actual load factor × operation time ratio during 30 minutes

• Harmonic content: Found in Table.

Harmonic contents (values when the fundamental wave current is 100%)

Reactor	5th	7th	11th	13th	17th	19th	23rd	25th
Not used	65	41	8.5	7.7	4.3	3.1	2.6	1.8
Used (AC side)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3
Used (DC side)*1	30	13	8.4	5.0	4.7	3.2	3.0	2.2
Used (AC, DC sides) *1	28	9.1	7.2	4.1	3.2	2.4	1.6	1.4

*1 The converter unit (FR-CC2) and the IP55 compatible model are equipped with a DC reactor on its DC side.

Rated capacities and outgoing harmonic currents when driven by inverter

Applied motor kW	Funda wave o (A	urrent	Fundamental wave current converted from 6.6 kV		(No reactor, 100% operation ratio)							
	200 V	400 V	(mA)	(5th	7th	11th	13th	17th	19th	23rd	25th
0.4	1.61	0.81	49	0.57	31.85	20.09	4.165	3.773	2.107	1.519	1.274	0.882
0.75	2.74	1.37	83	0.97	53.95	34.03	7.055	6.391	3.569	2.573	2.158	1.494
1.5	5.50	2.75	167	1.95	108.6	68.47	14.20	12.86	7.181	5.177	4.342	3.006
2.2	7.93	3.96	240	2.81	156.0	98.40	20.40	18.48	10.32	7.440	6.240	4.320
3.7	13.0	6.50	394	4.61	257.1	161.5	33.49	30.34	16.94	12.21	10.24	7.092
5.5	19.1	9.55	579	6.77	376.1	237.4	49.22	44.58	24.90	17.95	15.05	10.42
7.5	25.6	12.8	776	9.07	504.4	318.2	65.96	59.75	33.37	24.06	20.18	13.97
11	36.9	18.5	1121	13.1	728.7	459.6	95.29	86.32	48.20	34.75	29.15	20.18
15	49.8	24.9	1509	17.6	980.9	618.7	128.3	116.2	64.89	46.78	39.24	27.16
18.5	61.4	30.7	1860	21.8	1209	762.6	158.1	143.2	79.98	57.66	48.36	33.48
22	73.1	36.6	2220	25.9	1443	910.2	188.7	170.9	95.46	68.82	57.72	39.96
30	98.0	49.0	2970	34.7	1931	1218	252.5	228.7	127.7	92.07	77.22	53.46
37	121	60.4	3660	42.8	2379	1501	311.1	281.8	157.4	113.5	95.16	65.88
45	147	73.5	4450	52.1	2893	1825	378.3	342.7	191.4	138.0	115.7	80.10
55	180	89.9	5450	63.7	3543	2235	463.3	419.7	234.4	169.0	141.7	98.10

	Applied motor kW	Fundamental wave current (A)		wave current		wave current		Fundamental wave current converted from 6.6 kV	Rated capacity (kVA)	pacity (With a DC reactor, 100% operation						
		200 V	400 V	(mA)	(KVA)	5th	7th	11th	13th	17th	19th	23rd	25th			
	75	245	123	7455	87.2	2237	969	626	373	350	239	224	164			
	90	293	147	8909	104	2673	1158	748	445	419	285	267	196			
	110	357	179	10848	127	3254	1410	911	542	510	347	325	239			
	132	-	216	13091	153	3927	1702	1100	655	615	419	393	288			
	160	-	258	15636	183	4691	2033	1313	782	735	500	469	344			
	220	-	355	21515	252	6455	2797	1807	1076	1011	688	645	473			
	250	-	403	24424	286	7327	3175	2052	1221	1148	782	733	537			
	280	-	450	27273	319	8182	3545	2291	1364	1282	873	818	600			
	315	-	506	30667	359	9200	3987	2576	1533	1441	981	920	675			
	355	-	571	34606	405	10382	4499	2907	1730	1627	1107	1038	761			
	400	-	643	38970	456	11691	5066	3274	1949	1832	1247	1169	857			
	450	-	723	43818	512	13146	5696	3681	2191	2060	1402	1315	964			
	500	-	804	48727	570	14618	6335	4093	2436	2290	1559	1462	1072			
ľ	560	-	900	54545	638	16364	7091	4582	2727	2564	1746	1636	1200			
	630	-	1013	61394	718	18418	7981	5157	3070	2886	1965	1842	1351			

Conversion factors

Classification	C	Conversion coefficient Ki	
		Without reactor	K31 = 3.4
	Three-phase bridge	With reactor (AC side)	K32 = 1.8
3	(Capacitor smoothing)	With reactor (DC side)	K33 = 1.8
		With reactors (AC, DC sides)	K34 = 1.4
5	Self-excitation three-phase bridge	When a high power factor converter is used	K5 = 0

Outline

Functions

×

• List of applicable inverter models by rating (motor capacity \rightarrow inverter model)

For the combinations within the thick boarders, always connect a DC reactor (FR-HEL), which is available as an option.

◆ 200 V class (model: FR-F820-[])

Motor capacity (kW)*1	DC reactor		SLD (sı	iperlight load)		LD (light load)				
	FR-HEL-[]		Model	Rated current (A)		Model	Rated current (A)			
0.75	0.75K	0.75K	00046	4.6	0.75K	00046	4.2			
1.5	1.5K	1.5K	00077	7.7	1.5K	00077	7			
2.2	2.2K	2.2K	00105	10.5	2.2K	00105	9.6			
3.7	3.7K	3.7K	00167	16.7	3.7K	00167	15.2			
5.5	5.5K	5.5K	00250	25	5.5K	00250	23			
7.5	7.5K	7.5K	00340	34	7.5K	00340	31			
11	11K	11K	00490	49	11K	00490	45			
15	15K	15K	00630	63	15K	00630	58			
18.5	18.5K	18.5K	00770	77	18.5K	00770	70.5			
22	22K	22K	00930	93	22K	00930	85			
30	30K	30K	01250	125	30K	01250	114			
37	37K	37K	01540	154	37K	01540	140			
45	45K	45K	01870	187	45K	01870	170			
55	55K	55K	02330	233	55K	02330	212			
75	75K	75K	03160	316	75K	03160	288			
90	90K	90K	03800	380	90K	03800	346			
110	110K	301	03800	300	110K	04750	432			
132	110K *2	110K	04750	475	-	-	-			

400 V class (model: FR-F840-[])

Motor capacity (kW)*1	DC reactor		SLD (sup	perlight load)		LD (light load)
	FR-HEL-[]	M	lodel	Rated current (A)	N	lodel	Rated current (A)
0.75	H0.75K	0.75K	00023	2.3	0.75K	00023	2.1
1.5	H1.5K	1.5K	00038	3.8	1.5K	00038	3.5
2.2	H2.2K	2.2K	00052	5.2	2.2K	00052	4.8
3.7	H3.7K	3.7K	00083	8.3	3.7K	00083	7.6
5.5	H5.5K	5.5K	00126	12.6	5.5K	00126	11.5
7.5	H7.5K	7.5K	00170	17	7.5K	00170	16
11	H11K	11K	00250	25	11K	00250	23
15	H15K	15K	00310	31	15K	00310	29
18.5	H18.5K	18.5K	00380	38	18.5K	00380	35
22	H22K	22K	00470	47	22K	00470	43
30	H30K	30K	00620	62	30K	00620	57
37	H37K	37K	00770	77	37K	00770	70
45	H45K	45K	00930	93	45K	00930	85
55	H55K	55K	01160	116	55K	01160	106
75	H75K	75K	01800	180	75K	01800	144
90	H90K	7.51	01000	100	90K	02160	180
110	H110K	90K	02160	216	110K	02600	216
132	H132K	110K	02600	260	132K	03250	260
160	H160K	132K	03250	325	160K	03610	325
185	H185K	160K	03610	361	185K	04320	361
220	H220K	185K	04320	432	220K	04810	432
250	H250K	220K	04810	481	250K	05470	481
280	H280K	250K	05470	547	280K	06100	547
315	H315K	280K	06100	610	315K	06830	610
355	H355K	315K	06830	683	-	-	-

400 V class (model: FR-F842-[])

Motor capacity (kW)*1	Converter unit		SLD (su	perlight load)		LD (light load)				
	FR-CC2-[]	Model		Rated current (A)	N	lodel	Rated current (A)			
355	H355K	-	-	-	355K	07700	683			
400	H400K	355K	07700	770	400K	08660	770			
450	H450K	400K	08660	866	450K	09620	866			
500	H500K	450K	09620	962	500K	10940	962			
560	H560K	500K	10940	1094	560K	12120	1094			
630	H630K	560K	12120	1212	-	-	-			

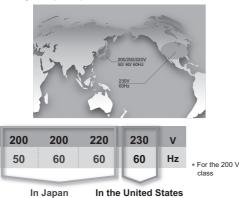
Indicates the maximum capacity applicable with the Mitsubishi 4-pole standard motor.
 The FR-HEL-110K supports the 200 V class 132 kW motor.

Overload current rating

SLD	110% 60 s, 120% 3 s (inverse-time characteristics) at surrounding air temperature of 40°C
LD	120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C

. . . .

PLC Function


Еха

High-performance energy-saving motor superline premium series SF-PR

One motor conforms to the power supply in Japan and the United States.

- The Japanese domestic three ratings conform to the Top Runner Standard of the "Act on the Rational Use of Energy (energy saving law)" to be applied on 1st April, 2015.
- The United States ratings conform to the Energy Independence and Security Act (EISA).

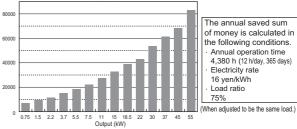
Interchangeable installation size

Replacement can be smoothly performed because the installation size (frame number) is compatible with our standard efficiency motor SF-JR series.

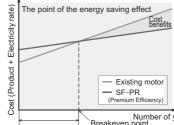
- It is possible to use a power distribution control equipment (thermal relay and breaker), which is the same as a conventional model.
- *1 For the frame number 180 LD or higher and some models of the 6-pole product, the total length or diametrical dimension is greatly different. The frame number is different from 1.5 kW6P (112M), 2.2 kW6P(132S) of the
- *2 SF-HR models.
- When replacing the SF-JR to the SF-PR, it is required to consider upgrading the *3 contactor to secure the same electric durability as using the SF-JR because the electric durability of the contactor may reduce by about 30%. Besides, when replacing the SF-JR to the SF-PR, the existing thermal relay may trip depending on the operating conditions (long starting time). As a countermeasure, consider "Adjusting the heater set value of the thermal" or "Adopting the thermal with a saturated reactor ", etc.
- *4 If the breaker NF400-SW manufactured by Mitsubishi Electric is used with the 55 kW motor, change the breaker. (Change the rated current of the breaker NF400-SW from 300 A to 350 A.)

We have released the superline premium series SF-PR models compatible with the Top Runner Standard in Japan, which is equivalent with IE3 premium efficiency for three-phase motors, and with the Energy Independence and Security Act (EISA) in the United States.

The SF-PR has achieved the efficiency class IE3 with the same dimensions as those of conventional models using our unique technology of the steel plate frame and new core materials. It maintains interchangeability with our standard efficiency motor SF-JR and easy replacement becomes possible.


By adopting a high-efficiency motor, energy savings in plant facilities and reduction of electricity consumption are expected, as well as the effects of recovering the investment cost.

Introduction effects of the superline premium series SF-PR


The SF-PR motor conforms to the Top Runner Standard (IE3 equivalent), which remarkably reduces its operation cost (electricity charges) and greatly contributes minimization of TCO (Total Cost Ownership).

Trial calculation example of an annual saved sum of money (at upgrading the motor from energy-efficiency class IE1 to IE3) Motor with 4-poles 200 V50 Hz

Annual saved sum of money (yen)

· Economic efficiency on an energy saving effect

Reduction in the electricity charges through the energy saving enables the investment cost to be recovered, and after that, the energy saving effect will bring some profit through power saving. The annual saved sum of money can be calculated according to the following formula. The longer operation time in an application, the more money can be saved.

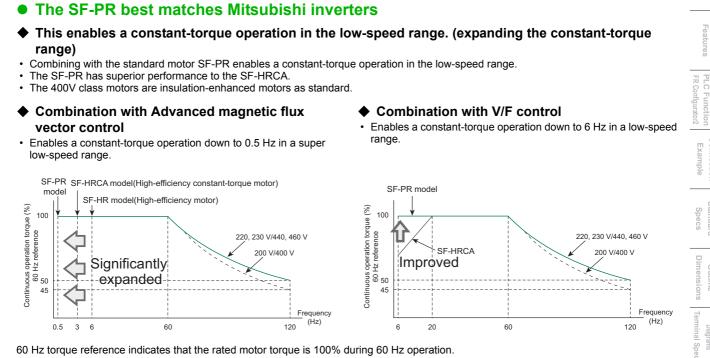
Number of years of use Breakeven point

Recovery period for the amount of a price

<Calculation formula>

	Dutput (kW) ×		SF-PR model	×	Number of motors	×	of use	Number of days of operation	×	Electricity rate (ven/kWh)
l		\ (%)	(%) /		motors		(h/day)	(day/year)	j –	(yen/kvvn)

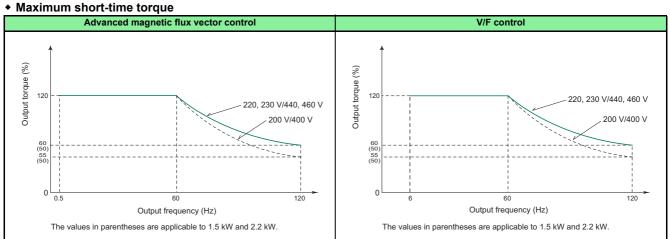
When replacing our standard motor SF-JR with the SF-PR on the ventilation fan in plant

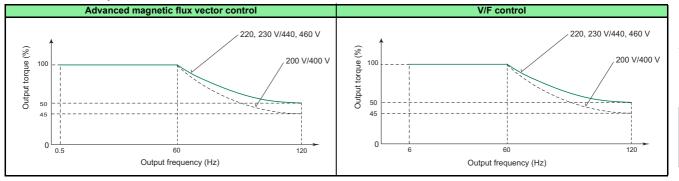

Trial calculation results in replacing the SF-JR with the SF-PR with improved efficiency by 5% under the same conditions of the load factor, operation time, and electricity charges, etc.

♦ Lineup

×

/lodel	SF	- [PR	R V	0	В	- K	R										_	
Symbol S St	Structure uperline ser		– Tota	closure ty ally enclos cooled		R Prem	Series nium series		Feet	tallation mounting	Symbo None	Indoor	sification type (IP4	4)	None	Vith or witho Without b	rake	Symbol None	Country code Japan and the U.S.A.
vailable	model		India	000100		Steel	plate fram	V	Vertic	cal type	O P	Dust-pro	r type (IF oof and oof type(IF		В	With bra	ike	UL KR	US UL standard Korea
wallabic	mouci	3									L	· · ·		/			. 1	EU	Europe
Тур	00						Tot	ally-enclo	sed fan	-cooled ty	/pe							CN	China
i Ab		Foot	mounting	g type	V	ertical typ	be	Fl	ange ty	ре	O	utdoor ty	ре	Dustpro	oof/wate	rproof type	L		
Moo	del		SF-PR			SF-PRV		:	SF-PRF			SF-PRO			SF-PF	RP.			
Number of	of poles	2P	4P	6P	2P	4P	6P	2P	4P	6P	2P	4P	6P	2P	4P	6P			
	0.75	•	•	٠	•	•	•	•	•	•	•	٠	٠	•	•	•			
	1.5	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•			
Ļ	2.2	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•			
Ļ	3.7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
-	5.5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
ŀ	7.5 11	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
Output	15	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
(kW)	18.5			-	•	•	-	-	-	-	•	•	-			•			
()	22	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
ŀ	30			•		•	•		· ·	•		•	•						pe and the flang
ŀ	37					•	•		· ·	•		•					type a	re also	available for the
ŀ	45					•				-	•	•					outdoo	or type a	and the dustproc
ŀ	55	•	•	_	•	•	-	_	_	-	•	•	-	•	•	-	waterp	proof typ	be.
								1							•: Avail	able model			

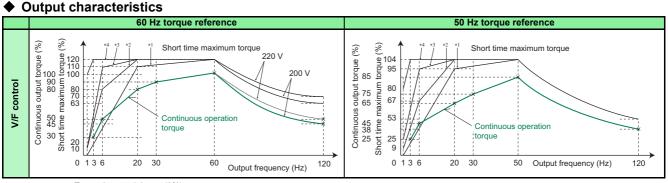

109


60 Hz torque reference indicates that the rated motor torque is 100% during 60 Hz operation.

Motor torque

The following shows torque characteristics of the high-performance, energy-saving motor (SF-PR, 4-pole) in combination with an inverter with the LD rating. The overload capacity decreases for the SLD rating. Observe the specified range of the inverter.

Continuous torque



Motors

. . . .

Application to standard motors

When the Mitsubishi standard squirrel-cage motor (SF-JR, 4-pole) and inverter of the same capacity are used, the torque characteristics are as shown below.

Torque boost minimum (0%) Torque boost standard (initial value)

*2 *3

Torque boost large 10%: FR-F820-00046(0.75K), FR-F840-00023(0.75K)

7%: FR-F820-00077(1.5K) to FR-F820-00167(3.7K), FR-F840-00038(1.5K) to FR-F840-00083(3.7K)

6%: FR-F820-00250(5.5K), FR-F820-00340(7.5K), FR-F840-00126(5.5K), FR-F840-00170(7.5K)

- 4%: FR-F820-00490(11K) or higher, FR-F840-00250(11K) or higher
- *4
- Torque boost adjustment (3.7 kW or lower) Under V/F control, all of SF-JR 2-pole, 4-pole, and 6-pole motors have the same torque characteristics.
- A 60 Hz torque reference indicates that the rated torque of the motor running at 60 Hz is 100%, and a 50 Hz torque reference indicates that the rated torgue of the motor running at 50 Hz is 100%
- A general-purpose squirrel cage motor must be used at lower continuous operating torque in rated operation as shown in the chart since the cooling capability of the fan installed on the rotor reduces at a lower speed. (Instantaneous torque occurs.)
- The toque with 200 or 220 V at 60 Hz or 200 V at 50 Hz in the chart indicates a motor torque reference (base frequency set in Pr.3 of the inverter) and is not the frequency of the power supply. In a 50 Hz power supply area, the 60 Hz setting can be set.
- As shown in the chart, the 60 Hz torque reference setting can bring out the 100% torque of the motor continuously, enabling more efficient use of the motor.
- When continuously operating a motor with the 50 Hz torque reference setting, set the load torque to 85% or lower.

This chart shows the characteristic available when a constant-torque load is selected for load pattern selection (Pr. 14).

Motor loss and temperature rise

The motor operated by the inverter has a limit on the continuous operating torque since it is slightly higher in temperature rise than the one operated by a commercial power supply. At a low speed, reduce the output torque of the motor since the cooling effect decreases. When 100% torque is needed continuously at low speed, consider using a constant-torque motor.

Torque characteristic

The motor operated by the inverter may be less in motor torque (especially starting torque) than the one driven by the commercial power supply. It is necessary to fully check the load torque characteristic of the machine.

Vibration

The machine-installed motor operated by the inverter may be slightly greater in vibration than the one driven by the commercial power supply. The possible causes of vibration are as follows.

- Vibration due to imbalance of the rotator itself including the machine
- Resonance due to the natural oscillation of the mechanical system. Caution is required especially when the machine used at constant speed is operated at variable speed. The frequency jump function allows resonance points to be avoided during operation. (During acceleration/deceleration, the frequency within the setting range is passed through.) An effect is also produced if Pr.72 PWM frequency selection is changed. When a two-pole motor is operated at higher than 60 Hz, caution should be taken since such an operation may cause abnormal vibration.

Application to constant-torque motors

Since a constant-torque motor is greater in current than the standard motor, the inverter capacity may be one rank higher. For a constant-torque motor, decrease Pr.0 Torque boost setting.

Recommended value 0.75 kW... 6%, 1.5 to 3.7 kW... 4%, 5.5 to 7.5 kW...3%, 11 to 37 kW...2%, 45 to 55 kW...1.5%, 75 kW or higher...1%

When two or more motors are operated synchronously, torque imbalance is likely to occur as motor slip is smaller than that of the standard motor.

Features

PLC Function

Parameter

r List

Functions Protective

Options

LVS/Cables

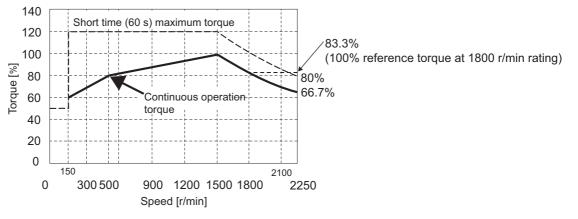
Precautions

Motors

Application to Premium high-efficiency IPM motor [MM-EFS (1500 r/min) series]

Motor specification

Moter model	200 V class MM-EFS[]1M 400 V class MM-EFS[]1M4	- 7	15	22	37	55	75	11K	15K	18K	22K	30K	37K	45K	55K
Compatible	200 V class FR-F820-[]									00770 (18.5K)					
inverter+3	400 V class FR-F840-[]									00380 (18.5K)					
Continuous	Rated output (kW)	0.75	1.5	2.2	-	5.5	7.5	11	15	18.5	22	30	37	-	55
	Rated torque (Num)	4.77	9.55	14	23.6	35	47.7	70	95.5	118	140	191	236	286	350
Rated speed (r/	/	1500													
Aaximum speed	()	2250													
lumber of pole	S	6								8					
/laximum torqu	e	120% 6	0 s												
rame number		80M	90L	100L	112M	132S	132M	160M	160L	180M		180L	200L		225S
nertia moment	J (×10 ^{−4} kg•m ²)	20	40	55	110	275	280	760	770	1700	1700	1900	3400	3850	6500
Rated current	200 V class	3	6.0	8.2	13.4	20	27	40	54	66	79	110	128	157	194
A)	400 V class	1.5	3.0	4.1	6.7	10	13.5	20	27	33	39.5	55	64	78.5	97
Structure		Totally-e	nclosed	fan-cool	ed motor	r. With st	eel fram	ed legs.	(protect	ive struct	ure IP44	4 *2)			
nsulation class		F class													
ibration class		V15													
	Surrounding air temperature and humidity	-10°C to	+40°C (non-free	zing) • 9	0%RH o	r less (n	on-cond	ensing)						
Environment	Storage temperature and humidity	-20°C to	+70°C (non-free	zing) · 9	0%RH o	r less (n	on-cond	ensing)						
	Atmosphere	Indoors	(not unde	er direct	sunlight), and fre	e from c	orrosive	e gas, fla	mmable g	gas, oil ı	mist, dus	st and di	rt.	
	Altitude	Maximur	n 1,000 i	m above	sea lev	el									
	Vibration	4.9 m/s ²													
Aass (kg)	•	11	15	22	31	50	53	95	100	135		155	220	230	290

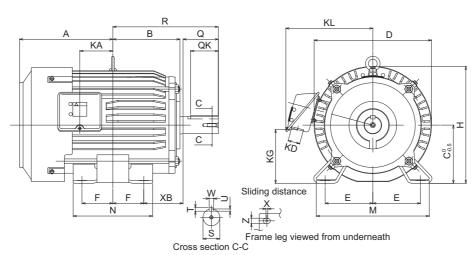

The above characteristics apply when the rated AC voltage is input from the inverter. (Refer to page 18.) Output and rated motor speed are not guaranteed *1

when the power supply voltage drops. This excludes the part where the axis passes through. *2

*3 For the LD rating

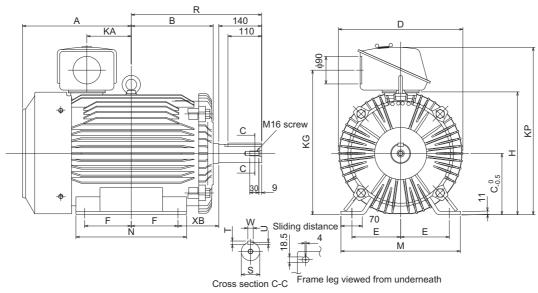
Motor torque characteristic

The following figure shows the torque characteristic of the premium high-efficiency IPM motor [MM-EFS (1500 r/min) series] when used with an inverter.


• NOTE

- The motor can also be used for applications which require the rated speed of 1800 r/min.
- The torque characteristic is when the armature winding temperature is 20°C, and the input voltage to the inverter is 200 VAC or 400 VAC.
- · Constant-speed operation cannot be performed for the speed of 150 r/min or less.
- · For driving an 11 kW or higher MM-EFS motor connected to a belt, contact your sales representative.

• Motor outline dimensions


· 30K or lower

×

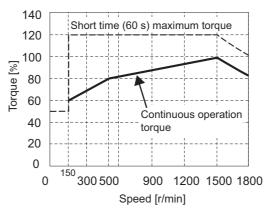
Madal		Output	Frame									Out	line c	limer	nsion	ı (mn	n)									
Model		(kŴ)	No.	Α	В	С	D	Е	F	н	KA	KD	KG	KL	М	Ν	ХВ	Q	QK	R	S	Т	U	w	Х	Ζ
	7	0.75	80M	122	93	80	162	62.5	50	166	39.5	27	63	145	160	125	50	40	32	140	φ19j6	6	3.5	6	15	9
	15	1.5	90L	143	111.5	90	184	70	62.5	191	53	27	76	158	175	150	56	50	40	168.5	ф24j6	7	4	8	15	9
	22	2.2	100L	173	128	100	207	80	70	203.5	65	27	88	169	200	180	63	60	45	193	¢28j6	7	4	8	4	12
200 V class	37	3.7	112M	181	135	112	228	95	70	226	69	27	103	180	230	180	70	60	45	200	ф28j6	7	4	8	4	12
MM-EFS[]1M	55	5.5	132S	211.5	152	132	266	108	70	265	75	27	120	197	256	180	89	80	63	239	¢38k6	8	5	10	4	12
	75	7.5	132M	230.5	171	132	266	108	89	265	94	27	120	197	256	218	89	80	63	258	φ38k6	8	5	10	4	12
400 V class	11K	11	160M	252	198	160	318	127	105	316	105	56	142	266	310	254	108	110	90	323	∳42k6	8	5	12	4	14.5
MM-EFS[]1M4	15K	15	160L	274	220	160	318	127	127	316	127	56	142	266	310	298	108	110	90	345	φ42k6	8	5	12	4	14.5
	18K	18.5	180M	202 5	225.5	100	262	120 5	120.5	250	127	56	168	289	335	205	101	110	00	251 5	∳48k6	9	5.5	14	4	14.5
	22K	22	1001/1	292.5	220.0	180	303	139.5	120.5	309	127	50	100	209	335	200	121	110	90	351.5	φ 40K 6	9	5.5	14	4	14.5
	30K	30	180L	311.5	242.5	180	363	139.5	139.5	359	146	56	168	289	335	323	121	110	90	370.5	φ55m6	10	6	16	4	14.5

• 37K to 55K

Model		Output	Frame							Ou	tline	dime	nsior	ı (mm	I)						
Woder		(kŴ)	No.	Α	В	С	D	Е	F	Н	KA	KG	KP	М	N	ХВ	R	S	Т	U	W
200 V class	37K	37	200L	355	267.5	200	406	159	152.5	401	145	472	548	390	361	133	425.5	∳60m6	11	7	18
MM-EFS[]1M 400 V class	45K	45	2001	555	207.5	200	400	135	152.5	ŧ	145	472	5	550	501	155	423.3	φοσπιο		1	10
MM-EFS[]1M4	55K	55	225S	365	277	225	446	178	143	446	145	517	593	428	342	149	432	¢65m6	11	7	18

• The drawings shown above are sample outline dimension drawings. The outer appearance may differ depending on the frame number.

• Application to Premium high-efficiency IPM motor [MM-THE4 (1500 r/min) series]


Motor specification

M	oter model			ММ	-THE4		
Vo	Itage class	200 V			400 V		
Annlia	able inverter +2	FR-F820-[]			FR-F840-[]		
Аррис	able inverter *2	03160(75K)	01800(75K)	02160(90K)	02600(110K)	03250(132K)	03610(160K)
Continuous	Rated output (kW)	75	75	90	110	132	160
characteristic *1	Rated torque (N·m)	477	477	573	700	840	1018
Rated speed (r/n	nin)	1500	•	•	•	•	•
Maximum speed	(r/min)	1800					
Number of poles		6					
Maximum torque	1	120% 60 s					
Frame number		250MA	250MA	250MD	280MD		
Inertia momer	nt J (×10 ⁻⁴ kg⋅m²)	6000	6000	10000	17500	20500	23250
Rated current (A)	270	135	170	195	230	280
Structure		Totally-enclosed	fan-cooled motor. W	/ith steel framed leg	s. (protective structi	ure IP44)	
Insulation class		F class					
Vibration class		V25					
	Surrounding air temperature and humidity	-10°C to +40°C (non-freezing) · 90%	RH or less (non-con	idensing)		
Environment	Storage temperature and humidity	-20°C to +70°C (non-freezing) · 90%	RH or less (non-con	idensing)		
	Atmosphere	Indoors (not unde	er direct sunlight), a	nd free from corrosiv	ve gas, flammable g	gas, oil mist, dust an	id dirt.
	Altitude	Maximum 1,000	m above sea level				
	Vibration	4.9 m/s ²					
Mass (kg)	·	470	470	610	780	810	860

*1 Output and rated motor speed are not guaranteed when the power supply voltage drops.
 *2 For the LD rating

♦ Motor torque characteristic

The following figure shows the torque characteristic of the premium high-efficiency IPM motor [MM-THE4] when used with an inverter.

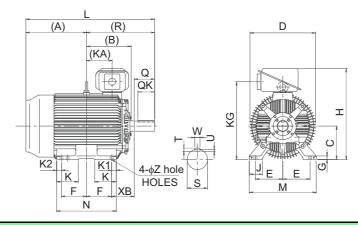
• NOTE

- The motor can also be used for applications which require the rated speed of 1800 r/min.
- The torque characteristic is when the armature winding temperature is 20°C, and the input voltage to the inverter is 200 VAC or 400 VAC.
- Constant-speed operation cannot be performed for the speed of 150 r/min or less.

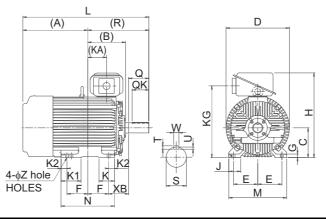
Lis

Protective

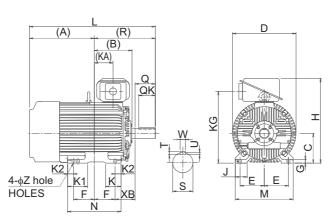
LVS/Cables


Precautions

Motors


Motor outline dimensions

• 75 kW


	Frame											Outli	ne di	mens	ion (mm)											
	No.	Α	В	С	D	Е	F	G	Н	J	KA	KG	К	K1	K2	L	М	N	Ζ	ХВ	Q	QK	R	S	Т	U	w
ſ	250MA	449.5	317	250	490	203	174.5	30	692	100	157.5	583	168	50	50	932	486	449	24	168	140	110	482.5	75m6	12	7.5	20

• 90 kW

	Frame											Out	line d	imen	sion	(mm)											
	No.	A	В	С	D	Е	F	G	Н	7	KA	KG	к	K1	K2	L	М	N	Ζ	ХВ	ø	QK	R	S	г	J	w
ſ	250MD	545.5	317	250	535	203	174.5	30	712	100	157.5	603	130	168	50	1028	486	449	24	168	140	110	482.5	75m6	12	7.5	20

• 110 kW, 132 kW, 160 kW

Frame											Outli	ne dir	nensi	on (r	nm)											
No.	Α	В	С	D	Е	F	G	н	J	KA	KG	к	K1	K2	L	М	Ν	Ζ	ХВ	Q	QK	R	S	т	U	w
280MD	596.5	374	280	587	228.5	209.5	30	782	110	210.5	673	130	181	40	1166	560	499	24	190	170	140	569.5	85m6	14	9	22

NOTE :

- The drawings shown above are sample outline dimension drawings. The outer appearance may differ depending on the frame number.
- For the 200 V class, models with capacities up to 75 kW are available.

<u>9</u> 2			
• PM moto	or control, PM parameter initial setting		
	M parameter initialization makes the IPM motor MM-EFS, MM-THE4 ready for PM	motor control.	Features
	requires the following conditions. acity is equal to or one rank lower than the inverter capacity.		ures
 Single-motor o 	peration (one motor to one inverter) is preformed.		P
 The overall wir exceeds 30 m, 	ing length with the motor is 100 m or shorter. (Even with the IPM motor MM-EFS, M perform offline auto tuning.)	IM-THE4, when the wiring length	plicatio LC Fu R Confi
	ocedure of PM motor control		Application Example PLC Function FR Configurator2
	PM motor control by the IPM initialization mode		
This inverter is se	t for an induction motor in the initial setting. Follow the following procedure to chang	ge the setting for the PM motor control.	Connection Example
			nple
	ne parameters required to drive an MM-EFS, MM-THE4 IPM motor are automatically changed a o change to the PM motor control, perform the following steps before setting other parameters. It		
ot	her parameters, some of those parameters will be initialized too. (Refer to "PM parameter initia itialized.)		Standard Specs
			dard
Caroon	Operation		
	at power-ON nonitor display appears.		Outline)imensio
	ng the operation mode		Outline Dimensions
2.	s PU EXT to choose the PU operation mode. [PU] indicator is lit.		
			Terminal Connection Diagrams Terminal Specs
3.	eter setting mode		onnecti ams I Spec
	MODE to choose the parameter setting mode. [PRM] indicator is lit.		
IPM pa	rameter initialization		eratio
4. Turn	until 戸州(IPM parameter initialization) appears.		Operation Panel
Setting	value display		
5.			eratior
Pres			Operation Steps
Chang	ng the setting value		
6. Turn	to change the set value to " $I = I$ ", then press SET .		Parameter
	and "/ 戸//" flicker alternately. The setting is completed.		9r List
			ס וד
Setting value	Parameter settings for an induction motor		Protective Functions
	Parameter settings for a premium high-efficiency IPM motor (rotations per minute) (MM-EFS, M	M-THE4)	live
	•	/	
	erforming IPM parameter initialization in the parameter setting mode automatically changes the	Pr 998 PM parameter initialization setting	Options
• Ir	the initial parameter setting, the capacity same as the inverter capacity is set in Pr.80 Motor ca	apacity. To use a motor capacity that is one	SL
	nk lower than the inverter capacity, set Motor capacity by selecting the mode on the operation poset a speed or to display monitored items in frequency, set Pr.998 . (Refer to Instruction Manua		L
 Selecting the 	PM sensorless vector control by Pr.998		LVS/Cables
 Setting Pr. Pr.998 setting 	998 PM parameter initialization as shown in the following table activates PM moto Description	or control. Operation on IPM parameter initialization	bles
0 (initial value)	Parameter settings for an induction motor (frequency)	$ \square \square \square (IPM) \rightarrow \text{write "0"}$	
12	Parameter settings for an IPM motor MM-EFS, MM-THE4 (rotations per minute)	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	Precautions
112	Parameter settings for an IDM motor MM-EES, MM-THE4 (frequency)		ions

- (·	
12	Parameter settings for an IPM motor MM-EFS, MM-THE4 (rotations per minute)	$I = M(IPM) \rightarrow write "12"$
112	Parameter settings for an IPM motor MM-EFS, MM-THE4 (frequency)	-
8009	Parameter (rotations per minute) settings for an IPM motor other than MM-EFS, MM-THE4 (after tuning)	-
8109	Parameter (frequency) settings for an IPM motor other than MM-EFS, MM-THE4 (frequency)	-
9009	Parameter (rotations per minute) settings for an SPM motor (after tuning)	-
9109	Parameter (frequency) settings for an SPM motor (after tuning)	-
L		

×

• The S-PM geared motor cannot be driven.

Warranty Inquiry

Motors

Compatibility

×

 PM parameter initialization list
 The parameter settings in the following table are changed to the settings required to perform PM motor control by selecting PM motor control with the IPM parameter initialization mode on the operation panel or with Pr.998 PM parameter initialization.

Performing parameter clear or all parameter clear sets back the parameter settings to the settings required to drive an induction motor.

						Setting				
				ction tor	PM motor (rotat	ions per minute)	PM motor	(frequency)	Setting	ncrements
Pr.	Name	Pr.998) value) CA	12 (MM-EFS, MM-THE4)	8009, 9009 (other than MM-EFS, MM-THE4)	112 (MM-EFS, MM-THE4)	8109, 9109 (other than MM-EFS, MM-THE4)	12, 8009, 9009	0, 112, 8109, 9109
1	Maximum frequency	,	120 Hz 60 Hz*		Maximum motor rotations per minute	Maximum motor rotations per minute*6	Maximum motor frequency	Maximum motor frequency*6	1 r/min	0.01 Hz
4	Multi-speed setting (speed)	high	60 Hz	50 Hz	Rated motor rotations per minute	Pr.84	Rated motor frequency	Pr.84	1 r/min	0.01 Hz
9	Electronic thermal O	0/L relay	Inverte current		Rated motor current (Refer to page 112, page 114.)	_	Rated motor current (Refer to page 112, page 114.)	_	0.01 A*1 0.1 A*2	
13	Starting frequency		0.5 Hz		Minimum rotations per minute	Pr.84 × 10%	Minimum frequency	Pr.84 × 10%	1 r/min	0.01 Hz
15	Jog frequency		5 Hz		Minimum rotations per minute	Pr.84 × 10%	Minimum frequency	Pr.84 × 10%	1 r/min	0.01 Hz
18	High speed maximul frequency	m	120 Hz 60 Hz*		Maximum motor rotations per minute	_	Maximum motor frequency	_	1 r/min	0.01 Hz
20	Acceleration/deceler reference frequency		60 Hz	50 Hz	Rated motor rotations per minute	Pr.84	Rated motor frequency	Pr.84	1 r/min	0.01 Hz
22	Stall prevention oper level	ration	120% *5	110% *5	Short-time motor to	orque			0.1%	
37	Speed display		0		0			•	1	-
55	Frequency monitorin reference	ıg	60 Hz	50 Hz	Rated motor rotations per minute	Pr.84	Rated motor frequency	Pr.84	1 r/min	0.01 Hz
56	Current monitoring r	eference	Inverte current		Rated motor current (Refer to page 112, page 114.)	Pr.859	Rated motor current (Refer to page 112, page 114.)	Pr.859	0.01 A*1 0.1 A*2	
71	Applied motor		0		210*3	—	210*3	—	1	
80	Motor capacity		9999		Inverter capacity*4	_	Inverter capacity*4	_	0.01 kW*1 0.1 kW*2	
81	Number of motor po	les	9999		Number of motor poles*4	_	Number of motor poles*4	_	1	
84	Rated motor frequer	су	9999		Rated motor rotations per minute*4	_	Rated motor frequency _{*4}	_	1 r/min	0.01 Hz
125 (903)	Terminal 2 frequency	y setting	60 Hz	50 Hz	Rated motor rotations per minute	Pr.84	Rated motor frequency	Pr.84	1 r/min	0.01 Hz
126 (905)	Terminal 4 frequency	y setting	60 Hz	50 Hz	Rated motor rotations per minute	Pr.84	Rated motor frequency	Pr.84	1 r/min	0.01 Hz
144	Speed setting switch	nover	4		Number of motor poles + 100	Pr.81 + 100	Number of motor poles	Pr.81	1	
240	Soft-PWM operation	selection	1		0		•	•	1	
263	Subtraction starting	frequency	60 Hz	50 Hz	Rated motor rotations per minute	Pr.84	Rated motor frequency	Pr.84	1 r/min	0.01 Hz
266	Power failure decele time switchover freq		60 Hz	50 Hz	Rated motor rotations per minute	Pr.84	Rated motor frequency	Pr.84	1 r/min	0.01 Hz
374	Overspeed detectior	n level	9999		Overspeed detection level, rotations per minute	Maximum motor rotations per minute + 10 Hz *6*7	Overspeed detection level, frequency	Maximum motor frequency + 10 Hz *6	1 r/min	0.01 Hz
390	% setting reference	frequency	60 Hz	50 Hz	Rated motor rotations per minute	Pr.84	Rated motor frequency	Pr.84	1 r/min	0.01 Hz
505	Speed setting refere	nce	60 Hz	50 Hz	Rated motor frequency	Pr.84	Rated motor frequency	Pr.84	0.01 Hz	
557	Current average valu		Inverte current		Rated motor current (Refer to page 112 ,	Pr.859	Rated motor current (Refer to page 112,	Pr.859	0.01 A*1	
	reference current		50.1011		page 114.)		page 114.)		0.1 A*2	

		Setting								
				ction otor	PM motor (rotat	ions per minute)	PM motor	(frequency)	Setting in	ncrements
Pr.	Name	me Pr.998		0 value)	12 (MM-EFS.	8009, 9009 (other than	112 (MM-EFS,	8109, 9109 (other than	12, 8009,	0, 112, 8109, 9109
			FM	CA	MM-THE4)	MM-EFS, MM-THE4)	MM-THE4)	MM-EFS, MM-THE4)	9009	8109, 9109
870	Speed detection hys	steresis	0 Hz		Speed detection hysteresis rotations per minute	0.5 Hz*7	Speed detection hysteresis frequency	0.5 Hz	1 r/min	0.01 Hz
885	Regeneration avoid compensation frequ value		6 Hz		Minimum rotations per minute	Pr.84 × 10%	Minimum frequency	Pr.84 × 10%	1 r/min	0.01 Hz
893	Energy saving monitor Inverte		Inverte		d Motor capacity (Pr.80)		0.01 kW*1	kW*1		
000	reference (motor ca	pacity)	capaci	ty		,			0.1 kW*2	
C14 (918)	Terminal 1 gain freq (speed)	uency	60 Hz	50 Hz	Rated motor rotations per minute	Pr.84	Rated motor frequency	Pr.84	1 r/min	0.01 Hz
	•			•	•	•	•	•	·	: Not changed

Initial value for the FR-F820-02330(55K) or lower and FR-F840-01160(55K) or lower

*1 *2

Initial value for the FR-F820-0230(55K) of lower and FR-F840-01160(55K) of lower linitial value for the FR-F820-03160(75K) or higher and FR-F840-01800(75K) or higher Setting **Pr.71 Applied motor** = "213, 214, 8093, 8094, 9093, or 9094" does not change the **Pr.71** setting. When a value other than "9999" is set, the set value is not changed. 110% for SLD, 120% for LD *3 *4

*5

Pr.702 Maximum motor frequency is used as the maximum motor frequency (rotations per minute). When Pr.702 = "9999 (initial value)", Pr.84 Rated *6 motor frequency is used as the maximum motor frequency (rotations per minute). The setting value is converted from frequency to rotations per minute. (The value after the conversion differs according to the number of motor poles.)

*7

NOTE :

• If IPM parameter initialization is performed in rotations per minute (Pr.998 = "3003, 8009, or 9009"), the parameters not listed in the table and the monitored items are also set and displayed in rotations per minute.

• IPM motor specification list

	MM-EFS (15 kW or lower)	MM-EFS (18.5 kW to 55 kW)	MM-THE4 (75 kW to 160 kW)	
Rated motor frequency (rotations per minute)	75 Hz (1500 r/min)	100 Hz (1500 r/min)	75 Hz (1500 r/min)	
Maximum motor frequency (rotations per minute)	112.5 Hz (2250 r/min)	150 Hz (2250 r/min)	90 Hz (1800 r/min)	
Number of motor poles	6	8	6	
Short-time motor torque	110% for SLD, 120% for LD			
Minimum frequency (rotations per minute)	7.5 Hz (150 r/min)	10 Hz (150 r/min)	7.5 Hz (150 r/min)	
Speed detection hysteresis frequency (rotations per minute)	0.5 Hz (10 r/min)	0.5 Hz (8 r/min)	0.5 Hz (10 r/min)	
Overspeed detection level, frequency (rotations per minute)	122.5 Hz (2450 r/min)	160 Hz (2400 r/min)	100 Hz (2000 r/min)	

Specs

Outline

Functions Protective

• Specification comparison between the PM motor control and the induction motor control

Item		PM motor control	Induction motor control	
Applicable motor		Premium high-efficiency IPM motor MM-EFS, MM-THE4 series (the same capacity as the inverter capacity)	General-purpose motor SF-JR, SF-PR series, etc.	
Number of conn	ectable motors	1: 1	Several motors can be driven under V/F control.	
Number of motor poles Rated motor frequency Maximum output frequency		MM-EFS 15 kW or lower: 6 poles MM-THE4: 6 poles MM-EFS 18.5 kW or higher: 8 poles	Normally 2, 4, or 6 poles.	
		MM-EFS 15 kW or lower: 75 Hz MM-THE4: 75 Hz MM-EFS 18.5 kW or higher: 100 Hz		
		MM-EFS 15 kW or lower: 112.5 Hz (2250 r/min with 6P) MM-EFS 18.5 kW or higher: 150 Hz (2250 r/min with 8P) MM-THE4: 90 Hz (1800 r/min with 6P)	590 Hz (17700 r/min with 4P) (Set the upper limit frequency (Pr.0, Pr.18) according to the motor and machine specifications.)	
Permissil	ble load	120% 60 s, 150% 3 s (inverse-time characteristics) (The % value is a ratio to the rated motor current.)	120% 60 s, 150% 3 s (inverse-time characteristics) (The % value is a ratio to the inverter rated current.)	
Maximum starting torque		50%	120% (Advanced magnetic flux vector control)	
Frequency setting resolution		(0 to 10 V/12 bits) *1 0.036 Hz / 0 to 75 Hz (1500 r/min) / 0.05 Hz / 0 to 100 Hz (1500 r/min) $(0 \text{ to } 5/1/11 \text{ bits} 0 \text{ to } 20 \text{ m}/(11 \text{ bits} 0 \text{ to } \pm10 \text{ V}/(12 \text{ bits}) =1$	0.015 Hz / 0 to 60 Hz (1800 r/min with 4P) (0 to 10 V/12 bits) 0.03 Hz / 0 to 60 Hz (1800 r/min with 4P) (0 to 5 V/11 bits, 0 to 20 mA/11 bits, 0 to ±10 V/12 bits) 0.06 Hz / 0 to 60 Hz (1800 r/min with 4P) (0 to ±5 V/11 bits)	
Output signal Pulse output for meter		In the initial setting, 1 mA is output at the rated motor frequency from across terminals FM and SD. (SD is a common terminal.) The permissible frequency load current is 2 mA. Pulse specification: 1440 pulses/s at the rated motor frequency	The perminais FM and SD. (SD is a common terminal.) The permissible frequency load current is 2 mA.	
Carrier frequency Automatic restart after instantaneous power failure		55K or lower: Four patterns of 2 kHz, 6 kHz, 10 kHz, and 14 kHz 75K or higher: Two patterns of 2 kHz and 6 kHz	55K or lower: Selectable between 0.75 kHz to 14.5 kHz 75K or higher: 0.75 kHz to 6 kHz	
		No startup waiting time. Using the regeneration avoidance function together is recommended.	Startup waiting time exists.	
Startup delay		Startup delay of about 0.1 s for initial tuning.	No startup delay.	
Driving by the commercial power supply		Not available Never connect an IPM motor to the commercial power supply.	Can be driven by the commercial power supply.	
Operation during motor coasting		While the motor is coasting, an electrical potential is generated across motor terminals. Before wiring, make sure that the motor is stopped.	While the motor is coasting, no potential is generated across motor terminals.	
Maximum motor		100 m or shorter	Overall length: 500 m or shorter	

The values differ for the 15K and lower capacity premium high-efficiency IPM motor, which requires 6 poles to run at the rated motor speed (1500 r/min), or for 18K and higher, which requires 8 poles to run at the speed. *1

X

- No slippage occurs with an IPM motor because of its characteristic.
 If an IPM motor, which took over a general-purpose motor, is driven at the same speed as for the general-purpose motor, the running speed of the IPM motor becomes faster by the amount of the general-purpose motor's slippage.
 Adjust the speed command to run the IPM motor at the same speed as the general-purpose motor, as required.

Countermeasures against deterioration of the 400 V class motor insulation

When driving a 400 V class motor by the inverter, surge voltages attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor. When the 400 V class motor is driven by the inverter, consider the following countermeasures:

With induction motor

It is recommended to take one of the following countermeasures:

• Rectifying the motor insulation and limiting the PWM carrier frequency according to the wiring length For the 400 V class motor, use an insulation-enhanced motor.

(The Mitsubishi high-efficiency motor SF-HR, the Mitsubishi constant-torque motor SF-HRCA, and the Mitsubishi high-performance, energysaving motor SF-PR are insulation-enhanced motors as standard.)

Specifically,

- Order a "400 V class inverter-driven insulation-enhanced motor".
- For the dedicated motor such as the constant-torque motor and low-vibration motor, use an "inverter-driven dedicated motor".
 Set Pr.72 PWM frequency selection as indicated below according to the wiring length.

•	•		e
Inverter	Wiring length 50 m or shorter	Wiring length 50 m to 100 m	Wiring length Longer than 100 m
Standard model	15 (14.5 kHz) or lower	9 (9 kHz) or lower	4 (4 kHz) lower
Separated converter type	6 (6 kHz) or lower	6 (6 kHz) or lower	4 (4 kHz) lower

· Suppressing the surge voltage on the inverter side

- For FR-F840-01160(55K) or lower, connect a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) at the output side of the inverter.
- For FR-F840-01800(75K) or higher, connect a sine wave filter (MT-BSL/BSC) at the output side of the inverter.

With PM motor

When the wiring length exceeds 50 m, set "9" (6 kHz) or less in Pr.72 PWM frequency selection.

• NOTE

• A surge voltage suppression filter (FR-ASF-H/FR-BMF-H) can be used under V/F control and Advanced magnetic flux vector control. A sine wave filter (MT-BSL/BSC) can be used under V/F control. Do not use the filters under different control.

Application to special motors

Motors with brake

Use the motor with brake having independent power supply for the brake, connect the brake power supply to the inverter primary side power and make the inverter output off using the output stop terminal (MRS) when the brake is applied (motor stop). Rattle may be heard according to the type of the brake in the low speed region but it is not a fault.

Pole changing motor

As this motor differs in rated current from the standard motor, confirm the maximum current of the motor and select the inverter. Be sure to change the number of poles after the motor has stopped. If the number of poles is changed during rotation, the regenerative overvoltage protection circuit may be activated to cause an inverter alarm, coasting the motor to a stop.

Geared motor

The continuous operating rotation range of this motor changes depending on the lubrication system and maker. Especially in the case of oil lubrication, continuous operation in the low-speed range only can cause gear seizure. For fast operation at higher than 60 Hz, please consult the motor maker.

Synchronous motor other than PM motor

This motor is not suitable for applications of large load variation or impact, where out-of-sync is likely to occur. Please contact your sales representative when using this motor because its starting current and rated current are greater than those of the standard motor and will not rotate stably at low speed.

Single phase motor

The single phase motor is not suitable for variable operation by the inverter.

For the capacitor starting system, the capacitor may be damaged due to harmonic current flowing to the capacitor. For the split-phase starting system and repulsion starting system, not only output torque is not generated at low speed but it will result in starting coil burnout due to failure of centrifugal force switch inside. Replace with a threephase motor for use.

Differences with the FR-F700(P) series

Item	FR-F700(P)	FR-F800			
Control method	V/F control Simple magnetic flux vector control IPM motor control	V/F control Advanced magnetic flux vector control PM motor control (IPM motor/SPM motor)			
Added functions	_	USB host function Safety stop function PLC function etc.			
Maximum output frequency V/F control	400 Hz	590 Hz			
PID control	Turn the X14 signal ON to enable PID control.	The X14 signal does not need to be assigned. (PID control is available by the Pr.128 setting.)			
Automatic restart after instantaneous power failure	Turn the CS signal ON to enable restart. Pr.186 CS terminal function selection initial value "6"	CS signal assignment not required. (Restart is enabled with the Pr.57 setting only.) Pr.186 CS terminal function selection initial value "9999"			
		Input from the terminal 2. (The function of the terminal 2 is switched by the Pr.561 setting.)			
USB connector	Not used USB host: A connector USB device: mini B connector				
Main circuit terminal screw size	Terminals R/L1, S/L2, T/L3, U, V, W: Same for all capacities Terminals P/+, N/-, P1: Same except for the 400 V class 01800(75K) (FR-F740(P)-01800(75K): M10, FR-F840- 01800(75K): M8) Screws for earthing (grounding): Same except for the 200 V class 03160(75K) (FR-F720(P)-03160(75K): M10, FR-F820- 03160(75K): M8)				
Control circuit terminal block	Removable terminal block (screw type)	Removable terminal block (spring clamp type)			
Terminal response level	The FR-F800's I/O terminals have better response level than the FR-F700(P)'s terminals. By setting Pr.289 Inverter output terminal filter and Pr.699 Input terminal filter , the terminal response level can be compatible with that of FR- F700(P). Set to approximately 5 to 8 ms and adjust the setting according to the system.				
PU	FR-DU07 (4-digit LED) FR-PU07 (4-digit LED) FR-PU07 (Some functions, such as parame unavailable.) FR-DU07 is not supported.				
Plug-in option	Dedicated plug-in options (not interchangeable)				
	One plug-in option can be mounted.	Up to three plug-in options can be mounted.			
Installation size	Installation size is compatible for standard models. (Replacement between the same capacities does not require new mounting holes. However, for the 200 V class 03160(75K), the installation interchange attachment (FR-F8AT) is required.) For separated converter types, installation size is not compatible. (New mounting holes are required.)				
Converter	Built-in for all capacities	An optional converter unit (FR-CC2) is required for separated converter types.			
DC reactor	The 75K or higher comes with a DC reactor (FR-HEL).	For the FR-F820-03160(75K) or higher, the FR-F840- 01800(75K) or higher, select a DC reactor suitable for the applicable motor capacity. (A DC reactor is not included.) Separated converter types (converter unit FR-CC2) have a built-in DC reactor.			
Brake unit (75 kW or higher)FR-BU2, MT-BU5FR-BU2		FR-BU2			

Installation precautions

- · Removal procedure of the front cover is different. (Refer to the Instruction Manual.)
- Plug-in options of the FR-A700 series are not compatible.
- Operation panel (FR-DU07) cannot be used.

Wiring precautions

• The spring clamp type terminal block has changed to the screw type. Use of blade terminals is recommended.

Instructions for continuous use of the FR-PU07 (parameter unit)

- For the FR-F800 series, many functions (parameters) have been added. When setting these parameters, the parameter names and setting ranges are not displayed.
- Only the parameter with the numbers up to "999" can be read and set. The parameters with the numbers after "999" cannot be read or set.
- Many protective functions have been added for the FR-F800 series. These functions are available, but all faults are displayed as "Fault". When the faults history is checked, "ERR" appears. Added faults will not appear on the parameter unit. (However, MT1 to MT3 are displayed as MT.)
- · Parameter copy/verification function are not available.

Copying parameter settings

• The FR-F700(P) series' parameter settings can be easily copied to the FR-F800 series by using the setup software (FR Configurator2). (Not supported by the setup software FR-SW3-SETUP or older.)

×

Parameter/function	Main difference from F700(P)			Remarks	
	Addition	Modification	Related parameter		
Maximum frequency		0	Pr.1 etc. Max. 590 Hz (Max. 400 Hz under other than V/F control)		
Free thermal (electronic thermal O/L relay)	0		Pr.600 to Pr.604, Pr.692 to Pr.696	Thermal characteristics can be freely set.	
PTC thermistor	0		Pr.561	The protection level can be set by parameters.	
Increased magnetic excitation deceleration	0		Pr.660 to Pr.662	Loss of the motor is increased to reduce regenerative power	
4 mA input check	0		Pr.573, Pr.777, Pr.778	Loss of 4 mA input is detected.	
Input terminal filter	0		Pr.699	The terminal response can be adjusted.	
Output terminal filter	0		Pr.289	The terminal response can be adjusted.	
Remote output terminal (analog)	0		Pr.655 to Pr.659	Optional analog output	
Parameter display by group	0		Pr.Md	The parameters are displayed in the conventional numerical order in the initial state.	
Traverse function	0		Pr.592 to Pr.597		
USB host (USB memory connection)	0		Pr.1049	Parameter read/copy, data logging, execution of the ladder in the USB (PLC function), etc.	
Second PID control	0		Pr.753 to Pr.758, Pr.1134, Pr.1135, Pr.1140, Pr.1141, Pr.1143 to Pr.1149		
PID pre-charge function	0		Pr.760 to Pr.769		
Multi-pump function	0		Pr.575 to Pr.591		
PLC function	0		Pr.414 to Pr.417, Pr.498, Pr.1150 to Pr.1199		
Maintenance timer		0	Pr.503, Pr.504, Pr.686 to Pr.689	The number of maintenance timers is increased from 1 to 3	
Multiple rating selection	0		Pr.570	The rating can be selected from SLD, or LD.	
24 V external power supply input	0		_	Operation is unavailable. (Communication and parameter setting are available.)	
Cooling fan operation selection		0	Pr.244 Waiting time at stop can be changed.		
Retry fanction		0	Pr.65 to Pr.69	The retry target faults are added.	
Auto tuning	0		Pr.96		
Emergency drive	0		Pr.514, Pr.515, Pr.523, Pr.524, Pr.1013		
GOT automatic recognition	0		-	The GOT2000 series is supported.	
BACnet MS/TP	0		Pr.726 to Pr.729		
Load characteristics measurement/fault detection	0		Pr.1480 to Pr.1492		
PID gain tuning	0		Pr.1211 to Pr.1219		
Advanced magnetic flux vector control	0		Pr.80, Pr.81, Pr.800		
Advanced optimum excitation control	0		Pr.60, Pr.80, Pr.81, Pr.800		
Self power management	0		Pr.30, Pr.137, Pr.248, Pr.254		

erminal Conn

Motors Compatibility

Warranty Inquiry

Item	FR-F842	Remarks (FR-F840)
Pr.30 Regenerative function selection	Setting ranges "2, 10, 11, 102, 110, 111" Initial value "10"	Setting ranges "0 to 2, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121" Initial value "0"
Monitor function (Pr.52, Pr.54, Pr.158, Pr.774 to Pr.776, Pr.992, Pr.1027 to Pr.1034)	Emergency drive status Without (Unacceptable)	
Input terminal function selection (Pr.178 to Pr.189)	DC feeding operation permission (X70), DC feeding cancel (X71), Emergency drive execution command (X84) Without (Unacceptable)	
Pr.187 MRS terminal function selection	Initial value "10" (X10)	Initial value "24" (MRS)
Output terminal function assignment selection (Pr.190 to Pr.196, Pr.313 to Pr.322)	Instantaneous power failure/undervoltage (IPF), Emergency drive in operation (Y65), Fault output during emergency drive (Y66), DC current feeding (Y85), Main circuit capacitor life (Y87), Inrush current limit circuit life (Y89) Without (Unacceptable)	
Pr.192 IPF terminal function selection	Initial value "9999" (No function)	Initial value "2" (IPF)
Inrush current limit circuit life display, Main circuit capacitor life display (Pr.256, Pr.258, Pr.259)	Without the parameter	
Emergency drive fanction (Pr.514, Pr.515, Pr.523, Pr.524, Pr.1013)	Without the parameter	
Pr.599 X10 terminal input selection	Initial value "1" (N/C contact specifications)	Initial value "0" (N/O contact specifications)
Pr.872 Input phase loss protection selection	Without the parameter	
Warning, protective functions	Emergency drive in operation (ED), Instantaneous power failure (E.IPF), Undervoltage (E.UVT), Input phase loss (E.ILF), Inrush current limit circuit fault (E.IOH) Not available	

×

When using this product, make sure to understand the warranty described below.

1. Warranty period and coverage

We will repair any failure or defect (hereinafter referred to as "failure") in our FA equipment (hereinafter referred to as the "Product") arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.

[Term]

The term of warranty for Product is twelve months after your purchase or delivery of the Product to a place designated by you or eighteen months from the date of manufacture whichever comes first ("Warranty Period"). Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Limitations]

- (1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged.
 - However, it will not be charged if we are responsible for the cause of the failure.
- (2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
- (3) Even during the term of warranty, the repair cost will be charged on you in the following cases;
 - 1) a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
 - 2) a failure caused by any alteration, etc. to the Product made on your side without our approval
 - a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
 - a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
 - 5) any replacement of consumable parts (condenser, cooling fan, etc.)
 - a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
 - 7) a failure caused by using the emergency drive function
 - a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
 - 9) any other failures which we are not responsible for or which you acknowledge we are not responsible for
- 2. Term of warranty after the stop of production
 - (1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
 - (2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.

3. Service in overseas

Our regional FA Center in overseas countries will accept the repair work of the Product; however, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.

4. Exclusion of responsibility for compensation against loss of opportunity, secondary loss, etc.

Whether under or after the term of warranty, we assume no responsibility for any damages arisen from causes for which we are not responsible, any losses of opportunity and/or profit incurred by you due to a failure of the Product, any damages, secondary damages or compensation for accidents arisen under a specific circumstance that are foreseen or unforeseen by our company, any damages to products other than the Product, and also compensation for any replacement work, readjustment, start-up test run of local machines and the Product and any other operations conducted by you.

5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.

6. Application and use of the Product

- (1) For the use of our product, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in product, and a backup or fail-safe function should operate on an external system to product when any failure or malfunction occurs.
- (2) Our product is designed and manufactured as a general purpose product for use at general industries.

Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used.

In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used. We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

LVS/Cables

Precautions

Motors

We visualize our customers' factories to solve problems and troubles.

"Visualization" of production and energy achieves future factories that advance one step forward.

The integrated solution, e-F@ctory, is based on our consolidated know-how, which has been developed through our own experiences as a user of FA products. Our e-F@ctory provides total cost reduction ranging from development to production and maintenance to achieve optimized production. This solution makes it possible to save energy and to optimize production by "visualization" that links upstream information systems and production site information, thus solving various problems on production sites.

Sharing information across production systems

MES Interface

Information sharing is easy and inexpensive because communication gateways, such as personal computers, are not necessary to connect factory equipment to the Manufacturing Execution System (MES).

Optimizing production from a TCO* stand point

iQ Platform

Factory automation components such as controllers, human-machine interfaces, engineering environments, and networks are all seamlessly integrated to reduce TCO across different stages, from development to production and maintenance.

Visualization of energy consumption

e&eco-F@ctory

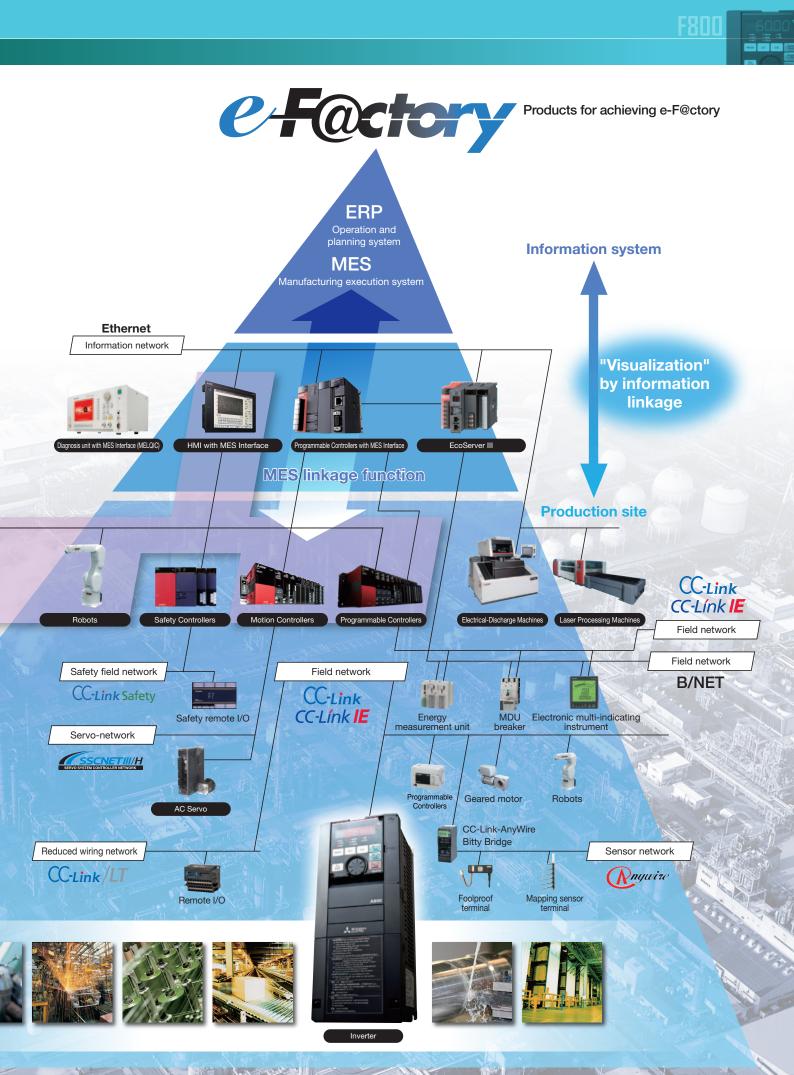
It is indispensable for today's factory to be energy conscious and efficient. The e-F@ctory solution enables management of specific energy consumption, which provides the visibility needed to improve productivity. Additionally, this solution takes the total life cycle into account, including factors such as "measurement and diagnosis", "countermeasures", and "operation and management". Backed by several successes and achievements, our knowhow will support your energy saving efforts.

Network

CC-Link Family, the open field network of the world standard, and SSCNET III/H, the servo network for achieving high-speed processing and enhancement of instruction synchronization, flexibly expanding the connectivity among equipment and devices in the e-F@ctory environment.

iQ Platform-compatible equipment

The inter-multi-CPU high-speed base unit provides slots for arbitrarily connecting programmable controllers, motion controllers, on-line CNCs, and robot controllers. Data communication speed among devices is enhanced, and their compatibility is extremely improved.


Numerical Controllers

iQ Platform-compatible engineering environments

Design information is integrated and shared at stages from system design to programming, tests and startup, and operation and maintenance. In addition, programming software programs for programmable controllers, motion controllers, on-line CNCs, robots, inverters, and GOTs, which are separately provided in a conventional environment, can be integrated.

Global network for comprehensive support of

127

customers' manufacturing.

Service bases are established around the world to globally provide the same services as in Japan.

Overseas bases are opened one after another to support business expansion of our customers.

Overseas bases As of July 2014 * Some includes distributors **Bases providing** Our overseas offices **Countries** (Regions) FA Center (Satellite) our products **EMEA** 6 (2) 54 11 146 4 (10) 1 13 171 21 13 79 10 14 4 (0) 130 16 1 0 3 2 27 (12) 83 60 529

MODE .567 ESC

MEMO

X

Trademarks

BACnet® is a registered trademark of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), LONWORKS® is a registered trademark of Echelon Corporation, DeviceNet[™] is a trademark of the ODVA, and PROFIBUS is a trademark of the PROFIBUS User Organization and MODBUS® is a registered trademark of Schneider Automation Incorporated, and ETHERNET® is a registered trademark of Xerox Corporation of the United States.

ß

Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other company and product names herein are the trademarks and registered trademarks of their respective owners.

▲ Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.

Mitsubishi Electric offers a wide range of automation equipment from PLCs and HMIs to CNC and EDM machines.

A NAME TO TRUST

Since its beginnings in 1870, some 45 companies use the Mitsubishi name, covering a spectrum of finance, commerce and industry.

The Mitsubishi brand name is recognized around the world as a symbol of premium quality.

Mitsubishi Electric Corporation is active in space development, transportation, semi-conductors, energy systems, communications and information processing, audio visual equipment and home electronics, building and energy management and automation systems, and has 237 factories and laboratories worldwide in over 121 countries.

This is why you can rely on Mitsubishi

Electric automation solution - because we know first hand about the need for reliable, efficient, easy-to-use automation and control in our own factories.

As one of the world's leading companies with a global turnover of over 4 trillion Yen (over \$40 billion), employing over 100,000 people, Mitsubishi Electric has the resource and the commitment to deliver the ultimate in service and support as well as the best products.

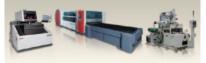
MODE 567 ESC

Low-voltage Circuit Breakers, Motor Starters

High-voltage Circuit Breakers, High-voltage Contactors

Energy Saving Supporting Devices, Power Monitoring Products

Programmable Controllers, HMIs (Human-Machine Interfaces)


AC Servos, Three-phase Motors, IPM Motors Inverters, Geared Motors

Computerized Numerical Controllers (CNCs)

Industrial Robots

Electrical Discharge Machines, Laser Processing Machines, Electron Beam Machines

Distribution Transformers

Pressurized Ventilation Fans, Uninterruptible Power Supplies

Mitsubishi Electric Corporation Nagoya Works is a factory certified for ISO14001 (standards for environmental management systems) and ISO9001 (standards for quality assurance management systems)

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN